24. The Law of Cosines (a) Two boats leave the same port at teh same time. One travels at a speed of 40 mi/h in the direction N 48° E and the other travels at a speed of 20 mi/h in the direction S 12°E. How far apart are the boats after 3/2 hours? (b) Two boats leave the same port at the same time. One travels at a speed of 10 mi/h in the direction S 12° W and the other travels at a speed of 20 mi/h in the direction S 72° W. How far apart are the boats after one hour? (c) A pilot flies in a straight path for 2 hours. She then makes a course correction, heading 45° to the right of her original course and flies 1 hour in the new direction. If she maintains a constant speed of 200 miles per hour, how far is she from her starting position? (d) Two straight roadsd diverge at an angle of 45°. Two cars leave the intersection at 4 pm, one traveling at 40 mi/h and the other at 60 mi/h. How far apart are the cars at 4:30pm? (e) Use either Law of Sines or Law of Cosines to determine possibilities for ZA, ZB, and ZC in the triangle AABC if b = (f) Triangle AABC has a = 7, 6 = 8 and c= 10. Solve for cos A. = 10/13, a = 10 and c= 30. 24.(a) 90mi (b) 10/3mi (c) 10/6 – 2/2mi (d) 10/13 – 6v2mi 7/13 (e) cos(A) 26 13 (f) cos(A) 32

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

Part E

Photo #1: Question

Photo #2: Answer Key

24. The Law of Cosines
(a) Two boats leave the same port at teh same time. One travels at a speed of 40 mi/h in the direction
N 48° E and the other travels at a speed of 20 mi/h in the direction S 12°E. How far apart are the boats
after 3/2 hours?
(b) Two boats leave the same port at the same time. One travels at a speed of 10 mi/h in the direction
S 12° W and the other travels at a speed of 20 mi/h in the direction S 72° W. How far apart are the boats
after one hour?
(c) A pilot flies in a straight path for 2 hours. She then makes a course correction, heading 45° to the right
of her original course and flies 1 hour in the new direction. If she maintains a constant speed of 200 miles
per hour, how far is she from her starting position?
(d) Two straight roadsd diverge at an angle of 45°. Two cars leave the intersection at 4 pm, one traveling
at 40 mi/h and the other at 60 mi/h. How far apart are the cars at 4:30pm?
(e) Use either Law of Sines or Law of Cosines to determine possibilities for ZA, ZB, and ZC in the
triangle AABC if b =
(f) Triangle AABC has a = 7, 6 = 8 and c= 10. Solve for cos A.
= 10/13, a = 10 and c= 30.
Transcribed Image Text:24. The Law of Cosines (a) Two boats leave the same port at teh same time. One travels at a speed of 40 mi/h in the direction N 48° E and the other travels at a speed of 20 mi/h in the direction S 12°E. How far apart are the boats after 3/2 hours? (b) Two boats leave the same port at the same time. One travels at a speed of 10 mi/h in the direction S 12° W and the other travels at a speed of 20 mi/h in the direction S 72° W. How far apart are the boats after one hour? (c) A pilot flies in a straight path for 2 hours. She then makes a course correction, heading 45° to the right of her original course and flies 1 hour in the new direction. If she maintains a constant speed of 200 miles per hour, how far is she from her starting position? (d) Two straight roadsd diverge at an angle of 45°. Two cars leave the intersection at 4 pm, one traveling at 40 mi/h and the other at 60 mi/h. How far apart are the cars at 4:30pm? (e) Use either Law of Sines or Law of Cosines to determine possibilities for ZA, ZB, and ZC in the triangle AABC if b = (f) Triangle AABC has a = 7, 6 = 8 and c= 10. Solve for cos A. = 10/13, a = 10 and c= 30.
24.(a) 90mi
(b) 10/3mi
(c) 10/6 – 2/2mi
(d) 10/13 – 6v2mi
7/13
(e) cos(A)
26
13
(f) cos(A)
32
Transcribed Image Text:24.(a) 90mi (b) 10/3mi (c) 10/6 – 2/2mi (d) 10/13 – 6v2mi 7/13 (e) cos(A) 26 13 (f) cos(A) 32
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,