24. If the second derivative f" exists at a value xo, show that f(xo + h) - 2f(xo) + f(xo − h) h² lim h→0 ƒ"(xo).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

24 pls

**24.** If the second derivative \( f'' \) exists at a value \( x_0 \), show that

\[
\lim_{{h \to 0}} \frac{{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}}{{h^2}} = f''(x_0).
\]

**25.** Suppose that \( f \) is defined by

\[
f: x \rightarrow 
\begin{cases} 
e^{-1/x^2} & \text{if } x > 0, \\
0 & \text{if } x \leq 0.
\end{cases}
\]

(a) Show that \( f^{(n)}(0) \) exists for every positive integer \( n \) (see Problem 7) and has the value 0.
Transcribed Image Text:**24.** If the second derivative \( f'' \) exists at a value \( x_0 \), show that \[ \lim_{{h \to 0}} \frac{{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}}{{h^2}} = f''(x_0). \] **25.** Suppose that \( f \) is defined by \[ f: x \rightarrow \begin{cases} e^{-1/x^2} & \text{if } x > 0, \\ 0 & \text{if } x \leq 0. \end{cases} \] (a) Show that \( f^{(n)}(0) \) exists for every positive integer \( n \) (see Problem 7) and has the value 0.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,