- 24. h(x, y, z) = ln (x² + y² − 1) + y + 6z, P(1, 1, 0)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question

Number 24 please

2,1)
In Exercises 19-24, find the directions in which the functions increase
and decrease most rapidly at Po. Then find the derivatives of the func
tions in these directions.
19. f(x, y) = x² + xy + y²,
20. f(x, y) = x²y + ey sin y,
21. f(x, y, z) = (x/y) - yz,
22. g(x, y, z) =
xe + z²,
Po(-1, 1)
Po(1, 0)
Po(4, 1, 1)
Po(1, In 2, 1/2)
23. f(x, y, z) =
ln xy + ln yz + ln xz, Po(1, 1, 1)
24. h(x, y, z) = ln (x² + y² - 1) + y + 6z, Po(1, 1, 0)
Transcribed Image Text:2,1) In Exercises 19-24, find the directions in which the functions increase and decrease most rapidly at Po. Then find the derivatives of the func tions in these directions. 19. f(x, y) = x² + xy + y², 20. f(x, y) = x²y + ey sin y, 21. f(x, y, z) = (x/y) - yz, 22. g(x, y, z) = xe + z², Po(-1, 1) Po(1, 0) Po(4, 1, 1) Po(1, In 2, 1/2) 23. f(x, y, z) = ln xy + ln yz + ln xz, Po(1, 1, 1) 24. h(x, y, z) = ln (x² + y² - 1) + y + 6z, Po(1, 1, 0)
Expert Solution
Step 1

The given function hx, y, z=lnx2+y2-1+y+6z.

We have to find the direction in which the function increases and decreases most rapidly at P01, 1, 0.

And also find the derivatives of the function in that direction.

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,