23. For the heat equation u = 2uxx, 0 0, with the boundary and initial conditions u(0,1)=0, u(3,1)= 0, u(x,0) = sin(x), the solution u(x, t) is (a) sin(x) cos(2πt) (b) sin(x) cos(√2) (c) sin(x) e-3 ut щ+ = вихх x t (d) sin(x) ²²1 Ⓒsin(x) e-2n² 0 0 3²=9 - (nz) ² kt nx nt 2² e sk

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please explain in detail where the purple 2/3 comes from and why. Thanks. This is my last question until it resets 

23. For the heat equation ut = 2uxx, 0<x<3, t> 0, with the boundary and initial conditions
u(0,1)= 0, u(3,1)= 0, u(x,0) = sin(x), the solution u(x,t) is
(a) sin(x) cos(2πt)
(b) sin(x) cos(πt√√2)
(c) sin(x) e-3
ut = Buxx
x t
u(0₁ €) = 0
드
کا
u(3,t):
u(x,0) = sin(xx)
(d) sin(x) ²²1
sin(x) e-2n²
0<x<3
L
=> 0
u(x, t)
=
NIM
A
WIN
u(x, t) =
3²=9
e
(?)
K→ 26
L→ 3 ≤₁ An sin (nxx) = sin(xx)
a=1
n = 3
n=1
= 1
लात
e
e
2
- (1²) ² kt
nx nt
2²
e
é
An e
2
-2 (9) x² +
2x
k
↓
_ 2n²=²+ sin (^_xx)
ન
x² t
-2x² t
sin (xx)
Transcribed Image Text:23. For the heat equation ut = 2uxx, 0<x<3, t> 0, with the boundary and initial conditions u(0,1)= 0, u(3,1)= 0, u(x,0) = sin(x), the solution u(x,t) is (a) sin(x) cos(2πt) (b) sin(x) cos(πt√√2) (c) sin(x) e-3 ut = Buxx x t u(0₁ €) = 0 드 کا u(3,t): u(x,0) = sin(xx) (d) sin(x) ²²1 sin(x) e-2n² 0<x<3 L => 0 u(x, t) = NIM A WIN u(x, t) = 3²=9 e (?) K→ 26 L→ 3 ≤₁ An sin (nxx) = sin(xx) a=1 n = 3 n=1 = 1 लात e e 2 - (1²) ² kt nx nt 2² e é An e 2 -2 (9) x² + 2x k ↓ _ 2n²=²+ sin (^_xx) ન x² t -2x² t sin (xx)
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,