23) It took 116 hours to produce 603 g of metal X by performing electrolysis on molten XCI3 with a current of 2.00 A. Calculate the molar mass of X. a) 55.8 g/mol b) 72.6 g/mol c) 27.0 g/mol d) 204 g.mol e) 209 g/mol

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Please answer the attached question:

# Standard Reduction Potentials

The following table lists standard reduction potentials (E°) for various redox couples in volts (V). Standard reduction potentials are used to predict the direction of electron flow in electrochemical cells.

## Reduction Potential Table

| Couple          | E° (Volts) | Couple         | E° (Volts) |
|-----------------|------------|----------------|------------|
| F₂              | HF (H⁺)    | +3.03          | SO₄²⁻      | H₂SO₃ (H⁺) | +0.20          |
| F₂              | F⁻         | +2.87          | Sn⁴⁺       | Sn²⁺        | +0.15          |
| S₂O₈²⁻          | SO₄²⁻      | +2.05          | S          | H₂S (H⁺)    | +0.141         |
| BiO₃⁻           | Bi³⁺       | +2.0           | Hg₂Br₂     | Hg (Br⁻)    | +0.140         |
| H₂O₂            | H₂O (H⁺)   | +1.78          | AgBr       | Ag (Br⁻)    | +0.0713        |
| PbO₂            | PbSO₄ (H⁺, SO₄²⁻) | +1.685   | H⁺         | H₂          | +0.0000        |
| Ce⁴⁺            | Ce³⁺       | +1.61          | Pb²⁺       | Pb          | -0.126        |
| MnO₄⁻           | Mn²⁺ (H⁺)  | +1.491         | Sn²⁺       | Sn          | -0.136        |
| ClO₃⁻           | Cl⁻        | +1.47          | AgI        | Ag (I⁻)     | -0.152        |
| PbO₂            | Pb²⁺ (H⁺)  | +1.46          | Ni²⁺       | Ni          | -0.250        |
| Au³⁺            | Au         | +1.42          | Co²
Transcribed Image Text:# Standard Reduction Potentials The following table lists standard reduction potentials (E°) for various redox couples in volts (V). Standard reduction potentials are used to predict the direction of electron flow in electrochemical cells. ## Reduction Potential Table | Couple | E° (Volts) | Couple | E° (Volts) | |-----------------|------------|----------------|------------| | F₂ | HF (H⁺) | +3.03 | SO₄²⁻ | H₂SO₃ (H⁺) | +0.20 | | F₂ | F⁻ | +2.87 | Sn⁴⁺ | Sn²⁺ | +0.15 | | S₂O₈²⁻ | SO₄²⁻ | +2.05 | S | H₂S (H⁺) | +0.141 | | BiO₃⁻ | Bi³⁺ | +2.0 | Hg₂Br₂ | Hg (Br⁻) | +0.140 | | H₂O₂ | H₂O (H⁺) | +1.78 | AgBr | Ag (Br⁻) | +0.0713 | | PbO₂ | PbSO₄ (H⁺, SO₄²⁻) | +1.685 | H⁺ | H₂ | +0.0000 | | Ce⁴⁺ | Ce³⁺ | +1.61 | Pb²⁺ | Pb | -0.126 | | MnO₄⁻ | Mn²⁺ (H⁺) | +1.491 | Sn²⁺ | Sn | -0.136 | | ClO₃⁻ | Cl⁻ | +1.47 | AgI | Ag (I⁻) | -0.152 | | PbO₂ | Pb²⁺ (H⁺) | +1.46 | Ni²⁺ | Ni | -0.250 | | Au³⁺ | Au | +1.42 | Co²
**Electrolysis Calculation Example**

**Problem Statement:** 

It took 116 hours to produce 603 g of metal X by performing electrolysis on molten XCl₃ with a current of 2.00 A. Calculate the molar mass of X.

**Multiple Choice Answers:**
a) 55.8 g/mol  
b) 72.6 g/mol  
c) 27.0 g/mol  
d) 204 g/mol  
e) 209 g/mol  

**Solution Explanation:**

To solve this problem, follow these steps:

1. **Calculate Total Charge (Q):**
   Using the formula: \( Q = I \times t \)

   Where:
   - \( I = 2.00 \) A (Current)
   - \( t = 116 \) hours \( = 116 \times 3600 \) seconds (time converted to seconds)

   \[ Q = 2.00 \, \text{A} \times 116 \times 3600 \, \text{s} \]
   \[ Q = 835200 \, \text{Coulombs (C)} \]

2. **Calculate Moles of Electrons:**
   Using Faraday's constant (\( F = 96485 \) C/mol)

   \[ \text{Moles of electrons} = \frac{Q}{F} \]
   \[ \text{Moles of electrons} = \frac{835200 \, \text{C}}{96485 \, \text{C/mol}} \]
   \[ \text{Moles of electrons} \approx 8.65 \, \text{mol} \]

3. **Relate Moles of Electrons to Moles of Metal X:**
   From the formula XCl₃, each mole of metal X requires 3 moles of electrons (since X has a +3 charge).

   \[ \text{Moles of X} = \frac{\text{Moles of electrons}}{3} \]
   \[ \text{Moles of X} = \frac{8.65 \, \text{mol}}{3} \]
   \[ \text{Moles of X} \approx 2.88 \, \text{mol} \]

4. **Calculate Molar Mass of Metal X:**

   \[ \text{
Transcribed Image Text:**Electrolysis Calculation Example** **Problem Statement:** It took 116 hours to produce 603 g of metal X by performing electrolysis on molten XCl₃ with a current of 2.00 A. Calculate the molar mass of X. **Multiple Choice Answers:** a) 55.8 g/mol b) 72.6 g/mol c) 27.0 g/mol d) 204 g/mol e) 209 g/mol **Solution Explanation:** To solve this problem, follow these steps: 1. **Calculate Total Charge (Q):** Using the formula: \( Q = I \times t \) Where: - \( I = 2.00 \) A (Current) - \( t = 116 \) hours \( = 116 \times 3600 \) seconds (time converted to seconds) \[ Q = 2.00 \, \text{A} \times 116 \times 3600 \, \text{s} \] \[ Q = 835200 \, \text{Coulombs (C)} \] 2. **Calculate Moles of Electrons:** Using Faraday's constant (\( F = 96485 \) C/mol) \[ \text{Moles of electrons} = \frac{Q}{F} \] \[ \text{Moles of electrons} = \frac{835200 \, \text{C}}{96485 \, \text{C/mol}} \] \[ \text{Moles of electrons} \approx 8.65 \, \text{mol} \] 3. **Relate Moles of Electrons to Moles of Metal X:** From the formula XCl₃, each mole of metal X requires 3 moles of electrons (since X has a +3 charge). \[ \text{Moles of X} = \frac{\text{Moles of electrons}}{3} \] \[ \text{Moles of X} = \frac{8.65 \, \text{mol}}{3} \] \[ \text{Moles of X} \approx 2.88 \, \text{mol} \] 4. **Calculate Molar Mass of Metal X:** \[ \text{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Organic Mustards
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY