23) Given f(x) = x² + x-2, defined over [-3, -1]. Starting from xo= -3, the absolute error Appr. - Exact after the first generated root by Newton's method is: (A) 0.75 (C) 1 (D) None (B) 0.5
23) Given f(x) = x² + x-2, defined over [-3, -1]. Starting from xo= -3, the absolute error Appr. - Exact after the first generated root by Newton's method is: (A) 0.75 (C) 1 (D) None (B) 0.5
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q 23 please
![19) Using Inverse method, Row 2 (R2) just after zeroing element A21 in (A/I) is:
(A) {0 1 -25/3 2/3}
(B) (0 18/3 1/3 2/3}
(C) (0 25/3-2/3 1}
(D) None
20) Using Inverse method, column 4 (C4) just after getting a unity diagonal is:
(A) {1/6 -2/25)T
(B) (0 3/25)
(C) (1/6 2/25)
(D) None
21) The firt column (C2) in the inverse matrix of A is:
(A) {3/50 -2/25)
(B) (4/25 -3/25) (C) (3/25 1)T (D) None
22) The exact solution for x2 is:
(A) 0.54
(B) 0.16
C) 0.57
(D) None
Problem 5: Using root finding methods answer question (23, 24 and 25).
23) Given f(x) = x² + x - 2, defined over [-3, -1]. Starting from xo= -3, the absolute
error Appr. - Exact after the first generated root by Newton's method is:
(A) 0.75
(B) 0.5
(C) 1
(D) None
24) Given f(x) = 7 -0.6x, By using Newton's method, the angel produced by the
tangent at any starting point close to the root is approximately:
(A)-40.18°
(B)-30.96
(C)-16.74
(D) None
25) Given f(x) = x² + x - 2. the fixed point using the fixed point method
(x = g(x)), where g(x) is a positive root squared function is:
(A)-2
(B) 1
(C)-2, 1
(D) None](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F91f46b34-0751-4c2b-b50a-7cac5fe72d00%2Feae7865c-24f1-485d-a8a8-1a8a952e50f4%2Fg5g5wih_processed.jpeg&w=3840&q=75)
Transcribed Image Text:19) Using Inverse method, Row 2 (R2) just after zeroing element A21 in (A/I) is:
(A) {0 1 -25/3 2/3}
(B) (0 18/3 1/3 2/3}
(C) (0 25/3-2/3 1}
(D) None
20) Using Inverse method, column 4 (C4) just after getting a unity diagonal is:
(A) {1/6 -2/25)T
(B) (0 3/25)
(C) (1/6 2/25)
(D) None
21) The firt column (C2) in the inverse matrix of A is:
(A) {3/50 -2/25)
(B) (4/25 -3/25) (C) (3/25 1)T (D) None
22) The exact solution for x2 is:
(A) 0.54
(B) 0.16
C) 0.57
(D) None
Problem 5: Using root finding methods answer question (23, 24 and 25).
23) Given f(x) = x² + x - 2, defined over [-3, -1]. Starting from xo= -3, the absolute
error Appr. - Exact after the first generated root by Newton's method is:
(A) 0.75
(B) 0.5
(C) 1
(D) None
24) Given f(x) = 7 -0.6x, By using Newton's method, the angel produced by the
tangent at any starting point close to the root is approximately:
(A)-40.18°
(B)-30.96
(C)-16.74
(D) None
25) Given f(x) = x² + x - 2. the fixed point using the fixed point method
(x = g(x)), where g(x) is a positive root squared function is:
(A)-2
(B) 1
(C)-2, 1
(D) None
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

