23-32 Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum. 23. 3 − 4 + 16 – 64 + .. - - 3 25. 10 - 2 + 0.4 0.08 + ... 26. 2+0.5 + 0.125 + 0.03125 +... ∞ 27. Σ 12(0.73)"-14 n=1 00 29. Σ n=1 31. Σ (-3) -1 4" - pan n=1 6"-1 27 24. 4 + 3 + 2 + 1/76 + 28. Σ n=1 π 00 30. Σ 5 πη 200 32. Σ η 3n+1 n=0 (-2)" 6.22n-1 n=1 3" να asgrovans 21

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
23,27,29
**Determine Convergence or Divergence of Geometric Series**

Consider the geometric series given for each problem below. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

**Problems:**

23. \( 3 - 4 + \frac{16}{3} - \frac{64}{9} + \ldots \)

24. \( 4 + 3 + \frac{9}{4} + \frac{27}{16} + \ldots \)

25. \( 10 - 2 + 0.4 - 0.08 + \ldots \)

26. \( 2 + 0.5 + 0.125 + 0.03125 + \ldots \)

27. \( \sum_{n=1}^{\infty} 12(0.73)^{n-1} \)

28. \( \sum_{n=1}^{\infty} \frac{5}{\pi^n} \)

29. \( \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} \)

30. \( \sum_{n=0}^{\infty} \frac{3^{n+1}}{(-2)^n} \)

31. \( \sum_{n=1}^{\infty} \frac{e^{2n}}{6^{n-1}} \)

32. \( \sum_{n=1}^{\infty} \frac{6 \cdot 2^{2n-1}}{3^n} \)

**Instructions:**
1. Identify the common ratio \( r \) for each geometric series.
2. Determine if \( |r| < 1 \) for convergence.
3. If the series is convergent, use the formula for the sum of a convergent geometric series:
   \[
   S = \frac{a}{1 - r}
   \]
   where \( a \) is the first term of the series.

**Note:**
To solve these problems, an understanding of geometric series properties, convergence criteria, and summation formulas is essential. Each problem requires careful identification of the common ratio and first term to assess convergence and calculate sums if applicable.
Transcribed Image Text:**Determine Convergence or Divergence of Geometric Series** Consider the geometric series given for each problem below. Determine whether the series is convergent or divergent. If it is convergent, find its sum. **Problems:** 23. \( 3 - 4 + \frac{16}{3} - \frac{64}{9} + \ldots \) 24. \( 4 + 3 + \frac{9}{4} + \frac{27}{16} + \ldots \) 25. \( 10 - 2 + 0.4 - 0.08 + \ldots \) 26. \( 2 + 0.5 + 0.125 + 0.03125 + \ldots \) 27. \( \sum_{n=1}^{\infty} 12(0.73)^{n-1} \) 28. \( \sum_{n=1}^{\infty} \frac{5}{\pi^n} \) 29. \( \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n} \) 30. \( \sum_{n=0}^{\infty} \frac{3^{n+1}}{(-2)^n} \) 31. \( \sum_{n=1}^{\infty} \frac{e^{2n}}{6^{n-1}} \) 32. \( \sum_{n=1}^{\infty} \frac{6 \cdot 2^{2n-1}}{3^n} \) **Instructions:** 1. Identify the common ratio \( r \) for each geometric series. 2. Determine if \( |r| < 1 \) for convergence. 3. If the series is convergent, use the formula for the sum of a convergent geometric series: \[ S = \frac{a}{1 - r} \] where \( a \) is the first term of the series. **Note:** To solve these problems, an understanding of geometric series properties, convergence criteria, and summation formulas is essential. Each problem requires careful identification of the common ratio and first term to assess convergence and calculate sums if applicable.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,