21. lim 1→+∞ 6-t³ 71³ +3

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
I am stuck on 21.
### Calculus: Limits at Infinity

#### Problems:

**13.** \(\lim_{{x \to +\infty}} \frac{3x + 1}{2x - 5} \)

**15.** \(\lim_{{y \to -\infty}} \frac{3}{y + 4} \)

**17.** \(\lim_{{x \to -\infty}} \frac{x - 2}{x^2 + 2x + 1} \)

**19.** \(\lim_{{x \to +\infty}} \frac{7 - 6x^5}{x + 3} \)

**21.** \(\lim_{{t \to -\infty}} \frac{6 - t^3}{7t^3 + 3} \)

**23.** \(\lim_{{x \to +\infty}} \sqrt[3]{\frac{2 + 3x - 5x^2}{1 + 8x^2}} \)

**25.** \(\lim_{{x \to -\infty}} \frac{\sqrt{5x^2 - 2}}{x + 3} \)

#### Explanation:

These problems involve finding the limit of different rational and radical functions as the variable approaches either positive or negative infinity. Rational functions are fractions involving polynomials, whereas the radical function incorporates a root.

For each problem, the behavior of the function as the variable \( x \) (or \( y \) or \( t \)) grows without bound, either positively or negatively, will be considered. Techniques such as algebraic manipulation and analyzing the highest degree terms in the numerator and denominator will be applied.
Transcribed Image Text:### Calculus: Limits at Infinity #### Problems: **13.** \(\lim_{{x \to +\infty}} \frac{3x + 1}{2x - 5} \) **15.** \(\lim_{{y \to -\infty}} \frac{3}{y + 4} \) **17.** \(\lim_{{x \to -\infty}} \frac{x - 2}{x^2 + 2x + 1} \) **19.** \(\lim_{{x \to +\infty}} \frac{7 - 6x^5}{x + 3} \) **21.** \(\lim_{{t \to -\infty}} \frac{6 - t^3}{7t^3 + 3} \) **23.** \(\lim_{{x \to +\infty}} \sqrt[3]{\frac{2 + 3x - 5x^2}{1 + 8x^2}} \) **25.** \(\lim_{{x \to -\infty}} \frac{\sqrt{5x^2 - 2}}{x + 3} \) #### Explanation: These problems involve finding the limit of different rational and radical functions as the variable approaches either positive or negative infinity. Rational functions are fractions involving polynomials, whereas the radical function incorporates a root. For each problem, the behavior of the function as the variable \( x \) (or \( y \) or \( t \)) grows without bound, either positively or negatively, will be considered. Techniques such as algebraic manipulation and analyzing the highest degree terms in the numerator and denominator will be applied.
### Calculus - Limits

#### Problem 19
Evaluate the limit:
\[ \lim_{x \to +\infty} \frac{7 - 6x^5}{x + 3} \]

Solution:
\[ \lim_{x \to +\infty} \frac{7 - 6x^5}{x + 3} = \lim_{x \to +\infty} \frac{-6x^5 + 7}{x + 3} \]

Since the highest power term in the numerator is \( -6x^5 \) and in the denominator is \( x \), the limit tends towards:
\[ -\infty \]
because the top value (numerator) is negative.

#### Problem 21
Evaluate the limit:
\[ \lim_{t \to +\infty} \frac{6 - t^3}{7t^3 + 3} \]

Solution:
\[ \lim_{t \to +\infty} \frac{6 - t^3}{7t^3 + 3} = \lim_{t \to +\infty} \frac{-t^3 + 6}{7t^3 + 3} \]

Divide the numerator and the denominator by \( t^3 \):
\[ = \lim_{t \to +\infty} \frac{-1 + \frac{6}{t^3}}{7 + \frac{3}{t^3}} \]

As \( t \to +\infty \), \(\frac{6}{t^3}\) and \(\frac{3}{t^3}\) approach 0:
\[ = \frac{-1 + 0}{7 + 0} = \frac{-1}{7} = -\frac{1}{7} \]

#### Problem 23
Evaluate the limit:
\[ \lim_{x \to -\infty} \sqrt[3]{\frac{2 + 3x - 5x^2}{1 + 9x^2}} \]

Solution:
The highest degrees in the numerator and denominator are \( x^2 \). Divide by \( x^2 \):
\[ \lim_{x \to -\infty} \sqrt[3]{\frac{\frac{2}{x^2} + \frac{3}{x} - 5}{\
Transcribed Image Text:### Calculus - Limits #### Problem 19 Evaluate the limit: \[ \lim_{x \to +\infty} \frac{7 - 6x^5}{x + 3} \] Solution: \[ \lim_{x \to +\infty} \frac{7 - 6x^5}{x + 3} = \lim_{x \to +\infty} \frac{-6x^5 + 7}{x + 3} \] Since the highest power term in the numerator is \( -6x^5 \) and in the denominator is \( x \), the limit tends towards: \[ -\infty \] because the top value (numerator) is negative. #### Problem 21 Evaluate the limit: \[ \lim_{t \to +\infty} \frac{6 - t^3}{7t^3 + 3} \] Solution: \[ \lim_{t \to +\infty} \frac{6 - t^3}{7t^3 + 3} = \lim_{t \to +\infty} \frac{-t^3 + 6}{7t^3 + 3} \] Divide the numerator and the denominator by \( t^3 \): \[ = \lim_{t \to +\infty} \frac{-1 + \frac{6}{t^3}}{7 + \frac{3}{t^3}} \] As \( t \to +\infty \), \(\frac{6}{t^3}\) and \(\frac{3}{t^3}\) approach 0: \[ = \frac{-1 + 0}{7 + 0} = \frac{-1}{7} = -\frac{1}{7} \] #### Problem 23 Evaluate the limit: \[ \lim_{x \to -\infty} \sqrt[3]{\frac{2 + 3x - 5x^2}{1 + 9x^2}} \] Solution: The highest degrees in the numerator and denominator are \( x^2 \). Divide by \( x^2 \): \[ \lim_{x \to -\infty} \sqrt[3]{\frac{\frac{2}{x^2} + \frac{3}{x} - 5}{\
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning