-21 6. e 2¹ sin2t+e³1²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Only 6

In Problems 1-20, determine the Laplace transform of the
given function using Table 7.1 on page 356 and the properties
of the transform given in Table 7.2. [Hint: In Problems 12-20,
use an appropriate trigonometric identity.]
1. t² + e¹ sin 2t
3. e¹cos 3t+e6t1
5. 2t²e¹t+ cos 4t
7. (t-1)4
9. et sin 2t
11. cosh bt
13. sin² t
15. cos³ t
17. sin 2t sin 5t
19. cos nt sin mt, m # n
2. 31²-21
4. 3t2t² + 1
6. e 2¹ sin2t + e³4²
8. (1+e¯¹)²
10. te²¹ cos 5t
12. sin 3t cos 3t
t
14. etsin²
16. t sin² t
18. cosnt cos mt, mn
20. t sin 2t sin 5t
21. Given that L{cos bt} (s) = s/(s² + b²), use the trans-
lation property to compute L{e" cos bt}.
22. Starting with the transform L{1}(s) 1/s, use for-
mula (6) for the derivatives of the Laplace transform
to show that L{t}(s) = 1/s², L{t²} (s) = 2!/s³,
and, by using induction, that L{f} (s) = n!/s"+¹,
n = 1, 2, ....
=
23. Use Theorem 4 on page 362 to show how entry 32 fol-
lows from entry 31 in the Laplace transform table on the
inside back cover of the text.
24. Show that Leªth} (s) = n!/(s-a)"+¹ in two ways:
(a) Use the translation property for F(s).
(b) Use formula (6) for the derivatives of the Laplace
transform.
Transcribed Image Text:In Problems 1-20, determine the Laplace transform of the given function using Table 7.1 on page 356 and the properties of the transform given in Table 7.2. [Hint: In Problems 12-20, use an appropriate trigonometric identity.] 1. t² + e¹ sin 2t 3. e¹cos 3t+e6t1 5. 2t²e¹t+ cos 4t 7. (t-1)4 9. et sin 2t 11. cosh bt 13. sin² t 15. cos³ t 17. sin 2t sin 5t 19. cos nt sin mt, m # n 2. 31²-21 4. 3t2t² + 1 6. e 2¹ sin2t + e³4² 8. (1+e¯¹)² 10. te²¹ cos 5t 12. sin 3t cos 3t t 14. etsin² 16. t sin² t 18. cosnt cos mt, mn 20. t sin 2t sin 5t 21. Given that L{cos bt} (s) = s/(s² + b²), use the trans- lation property to compute L{e" cos bt}. 22. Starting with the transform L{1}(s) 1/s, use for- mula (6) for the derivatives of the Laplace transform to show that L{t}(s) = 1/s², L{t²} (s) = 2!/s³, and, by using induction, that L{f} (s) = n!/s"+¹, n = 1, 2, .... = 23. Use Theorem 4 on page 362 to show how entry 32 fol- lows from entry 31 in the Laplace transform table on the inside back cover of the text. 24. Show that Leªth} (s) = n!/(s-a)"+¹ in two ways: (a) Use the translation property for F(s). (b) Use formula (6) for the derivatives of the Laplace transform.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,