(-2)+1 1+3"

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Part 4,5 and 6 if possible please!
4.
5.
6.
(-2)+¹
m=11+3m
π
Σ(-1) cod)
n=1
n=1
a.
2
(-1)"
(2n)!
Use the AST to show this series conver
Transcribed Image Text:4. 5. 6. (-2)+¹ m=11+3m π Σ(-1) cod) n=1 n=1 a. 2 (-1)" (2n)! Use the AST to show this series conver
Determine whether the following series converge or
diverge. You must show that the series satisfies the
necessary conditions in order to use the AST. Show
that lima, = 0 using good limit analysis. If these
k-00
conditions aren't satisfied, you'll have to use a
different test.
1.
(-1)"-¹
2n+1
1
4
Alternating Series Test (AST)
If the numbers ak satisfy the three conditions:
a> 0 for all k (each az is positive)
• ak> ak+1 ({at} is monotonically decreasing)
• lim ax = 0
k→∞0
00
then the alternating series (-1) a converges.
k=0
Transcribed Image Text:Determine whether the following series converge or diverge. You must show that the series satisfies the necessary conditions in order to use the AST. Show that lima, = 0 using good limit analysis. If these k-00 conditions aren't satisfied, you'll have to use a different test. 1. (-1)"-¹ 2n+1 1 4 Alternating Series Test (AST) If the numbers ak satisfy the three conditions: a> 0 for all k (each az is positive) • ak> ak+1 ({at} is monotonically decreasing) • lim ax = 0 k→∞0 00 then the alternating series (-1) a converges. k=0
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,