202 Groups 45. 30. Express U(165) as an internal direct product of proper subgroups 46. in four different ways. 31. Let R denote the group of all nonzero real numbers under multi plication. Let R denote the group of positive real numbers under multiplication. Prove that R* is the internal direct product of R+ and the subgroup {1, -1} 32. Prove that D, cannot be expressed as an internal direct product of two proper subgroups. 33. Let H and K be subgroups of a group G. If G = HK and g = hk. where h E H and k E K, is there any relationship among Igl, Ihl, 47. 48. 49. 4 50. and lkl? What if G = H X K? 51 34. In Z, let H = (5) and K = (7). Prove that Z = HK. Does Z = HX K {3a6 10c I a, b, c E Z} under multiplication and H = 35. Let G {3a6b12c I a, b, c E Z} under multiplication. Prove that G = (3) x (6) X (10), whereas H (3) x (6) X (12). 36. Determine all subgroups of R* (nonzero reals under multiplica- tion) of index 2 37. Let G be a finite group and let H be a normal subgroup of G. Prove that the order of the element gH in G/H must divide the order of g in G. 52 53 54 38. Let H bea normal subgroup of G and let a belong to G. If the ele- ment aH has order 3 in the group G/H and H =10, what are the possibilities for the order of a? 39. If H is a normal subgroup of a group G, prove tralizer of H in G, is a normal subgroup of G. 1t that C(H), the cen- 40. Let d be an isomorphism from a group G onto a group G. Prove that if H is a normal subgroup of G, then d(H) is a normal sub- group of G. 41. Show that Q, the group of rational numbers under addition, has no proper subgroup of finite index. 42. An element is called a square if it can be expressed in the form b for some b. Suppose that G is an Abelian group and H is a sub- group of G. If every element of H is a square and every element of GIH is a square, prove that every element of G is a square. Does your proof remain valid when "square" is replaced by "nth power, where n is any integer? 43. Show, by example, that in a factor group G/H it can happen that aH bH but lal lbl. 44. Observe from the table for A given in Table 5.1 on page 111 that the subgroup given in Example 9 of this chapter is the only sub- group of A, of order 4. Why does this imply that this subgroup must be normal in A? Generalize this to arbitrary finite groups. 4
Angles in Circles
Angles within a circle are feasible to create with the help of different properties of the circle such as radii, tangents, and chords. The radius is the distance from the center of the circle to the circumference of the circle. A tangent is a line made perpendicular to the radius through its endpoint placed on the circle as well as the line drawn at right angles to a tangent across the point of contact when the circle passes through the center of the circle. The chord is a line segment with its endpoints on the circle. A secant line or secant is the infinite extension of the chord.
Arcs in Circles
A circular arc is the arc of a circle formed by two distinct points. It is a section or segment of the circumference of a circle. A straight line passing through the center connecting the two distinct ends of the arc is termed a semi-circular arc.
40


Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images









