202 Groups 45. 30. Express U(165) as an internal direct product of proper subgroups 46. in four different ways. 31. Let R denote the group of all nonzero real numbers under multi plication. Let R denote the group of positive real numbers under multiplication. Prove that R* is the internal direct product of R+ and the subgroup {1, -1} 32. Prove that D, cannot be expressed as an internal direct product of two proper subgroups. 33. Let H and K be subgroups of a group G. If G = HK and g = hk. where h E H and k E K, is there any relationship among Igl, Ihl, 47. 48. 49. 4 50. and lkl? What if G = H X K? 51 34. In Z, let H = (5) and K = (7). Prove that Z = HK. Does Z = HX K {3a6 10c I a, b, c E Z} under multiplication and H = 35. Let G {3a6b12c I a, b, c E Z} under multiplication. Prove that G = (3) x (6) X (10), whereas H (3) x (6) X (12). 36. Determine all subgroups of R* (nonzero reals under multiplica- tion) of index 2 37. Let G be a finite group and let H be a normal subgroup of G. Prove that the order of the element gH in G/H must divide the order of g in G. 52 53 54 38. Let H bea normal subgroup of G and let a belong to G. If the ele- ment aH has order 3 in the group G/H and H =10, what are the possibilities for the order of a? 39. If H is a normal subgroup of a group G, prove tralizer of H in G, is a normal subgroup of G. 1t that C(H), the cen- 40. Let d be an isomorphism from a group G onto a group G. Prove that if H is a normal subgroup of G, then d(H) is a normal sub- group of G. 41. Show that Q, the group of rational numbers under addition, has no proper subgroup of finite index. 42. An element is called a square if it can be expressed in the form b for some b. Suppose that G is an Abelian group and H is a sub- group of G. If every element of H is a square and every element of GIH is a square, prove that every element of G is a square. Does your proof remain valid when "square" is replaced by "nth power, where n is any integer? 43. Show, by example, that in a factor group G/H it can happen that aH bH but lal lbl. 44. Observe from the table for A given in Table 5.1 on page 111 that the subgroup given in Example 9 of this chapter is the only sub- group of A, of order 4. Why does this imply that this subgroup must be normal in A? Generalize this to arbitrary finite groups. 4
202 Groups 45. 30. Express U(165) as an internal direct product of proper subgroups 46. in four different ways. 31. Let R denote the group of all nonzero real numbers under multi plication. Let R denote the group of positive real numbers under multiplication. Prove that R* is the internal direct product of R+ and the subgroup {1, -1} 32. Prove that D, cannot be expressed as an internal direct product of two proper subgroups. 33. Let H and K be subgroups of a group G. If G = HK and g = hk. where h E H and k E K, is there any relationship among Igl, Ihl, 47. 48. 49. 4 50. and lkl? What if G = H X K? 51 34. In Z, let H = (5) and K = (7). Prove that Z = HK. Does Z = HX K {3a6 10c I a, b, c E Z} under multiplication and H = 35. Let G {3a6b12c I a, b, c E Z} under multiplication. Prove that G = (3) x (6) X (10), whereas H (3) x (6) X (12). 36. Determine all subgroups of R* (nonzero reals under multiplica- tion) of index 2 37. Let G be a finite group and let H be a normal subgroup of G. Prove that the order of the element gH in G/H must divide the order of g in G. 52 53 54 38. Let H bea normal subgroup of G and let a belong to G. If the ele- ment aH has order 3 in the group G/H and H =10, what are the possibilities for the order of a? 39. If H is a normal subgroup of a group G, prove tralizer of H in G, is a normal subgroup of G. 1t that C(H), the cen- 40. Let d be an isomorphism from a group G onto a group G. Prove that if H is a normal subgroup of G, then d(H) is a normal sub- group of G. 41. Show that Q, the group of rational numbers under addition, has no proper subgroup of finite index. 42. An element is called a square if it can be expressed in the form b for some b. Suppose that G is an Abelian group and H is a sub- group of G. If every element of H is a square and every element of GIH is a square, prove that every element of G is a square. Does your proof remain valid when "square" is replaced by "nth power, where n is any integer? 43. Show, by example, that in a factor group G/H it can happen that aH bH but lal lbl. 44. Observe from the table for A given in Table 5.1 on page 111 that the subgroup given in Example 9 of this chapter is the only sub- group of A, of order 4. Why does this imply that this subgroup must be normal in A? Generalize this to arbitrary finite groups. 4
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Concept explainers
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
Topic Video
Question
34
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,