2.7 a. The root mean-square (rms) bandwidth of a low-pass signal g(t) of finite energy is defined by .2יר rms where |G(f)P is the energy spectral density of the signal. Correspondingly, the root mean-square (rms) duration of the signal is defined by T. rms Using these definitions, show that Tm, W. rms rms Assume that g(t)|→ 0 faster than 1/ as |r| → 0. b. Consider a Gaussian pulse defined by 8(1) = exp(-n) Show that for this signal the equality Tm W, is satisfied. Hint: Use Schwarz's inequality in which we set 81(1) = tg(t) and dg(t) 82(1) = dt %3D -15

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
2.7 a. The root mean-square (rms) bandwidth of a low-pass signal g(t) of finite energy is defined by
1/2
W.
rms
where |G(f) is the energy spectral density of the signal. Correspondingly, the root mean-square
(rms) duration of the signal is defined by
Trms
00
Using these definitions, show that
1
T
W
rms
rms
Assume that g(t)|→0 faster than 1/| as t| → 0.
b. Consider a Gaussian pulse defined by
8(1) = exp(-ni)
%3D
Show that for this signal the equality
1
T, W.
rms
rms
is satisfied.
Hint: Use Schwarz's inequality
in which we set
81(1) = tg(t)
%3D
and
dg(t)
82(1) =
dt
Transcribed Image Text:2.7 a. The root mean-square (rms) bandwidth of a low-pass signal g(t) of finite energy is defined by 1/2 W. rms where |G(f) is the energy spectral density of the signal. Correspondingly, the root mean-square (rms) duration of the signal is defined by Trms 00 Using these definitions, show that 1 T W rms rms Assume that g(t)|→0 faster than 1/| as t| → 0. b. Consider a Gaussian pulse defined by 8(1) = exp(-ni) %3D Show that for this signal the equality 1 T, W. rms rms is satisfied. Hint: Use Schwarz's inequality in which we set 81(1) = tg(t) %3D and dg(t) 82(1) = dt
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Sequence
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,