2.3.12 Prove Lemma 2.3.10 (2). Only need to prove #2 0f Lemma 2.3.10. Lemma 2.3.10. Let a E R. 1. a <0 if and only if a < ɛ for all ɛ > 0 2. a 2 0 if and omly if a > -e for all ɛ > 0 3. a = 0 if and omly if Ja| < ɛ for all ɛ > 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

2.3.12

Please include reasons for each step. 

From The Real Numbers and Real Analysis

https://muhammadalfaridzi.files.wordpress.com/2014/05/the_real_numbers_and_real_analysis.pdf

 

### Section 2.3.12

**Task**: Prove Lemma 2.3.10 (2). Only need to prove #2 of Lemma 2.3.10.

---

### Lemma 2.3.10

Let \( a \in \mathbb{R} \).

1. \( a \leq 0 \) if and only if \( a < \varepsilon \) for all \( \varepsilon > 0 \)

2. \( a \geq 0 \) if and only if \( a > -\varepsilon \) for all \( \varepsilon > 0 \)

3. \( a = 0 \) if and only if \( |a| < \varepsilon \) for all \( \varepsilon > 0 \)

---

This lemma involves proving inequalities for real numbers using limits and comparisons with small positive numbers \( \varepsilon \). The goal is to demonstrate the truth of these inequalities under the specified conditions.
Transcribed Image Text:### Section 2.3.12 **Task**: Prove Lemma 2.3.10 (2). Only need to prove #2 of Lemma 2.3.10. --- ### Lemma 2.3.10 Let \( a \in \mathbb{R} \). 1. \( a \leq 0 \) if and only if \( a < \varepsilon \) for all \( \varepsilon > 0 \) 2. \( a \geq 0 \) if and only if \( a > -\varepsilon \) for all \( \varepsilon > 0 \) 3. \( a = 0 \) if and only if \( |a| < \varepsilon \) for all \( \varepsilon > 0 \) --- This lemma involves proving inequalities for real numbers using limits and comparisons with small positive numbers \( \varepsilon \). The goal is to demonstrate the truth of these inequalities under the specified conditions.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,