2.2. Use numerical integration to approximate o So ysinxdydx over a rectangular region with subintervals m =n = 2 and then determine the percentage deviation between the approximated value and the analytic value of the integral. (Calculations should be correct to four decimal places).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2.2. Use numerical integration to approximate o So ysinxdydx over a rectangular region
with subintervals m = n = 2 and then determine the percentage deviation
between the approximated value and the analytic value of the integral.
(Calculations should be correct to four decimal places).
Transcribed Image Text:2.2. Use numerical integration to approximate o So ysinxdydx over a rectangular region with subintervals m = n = 2 and then determine the percentage deviation between the approximated value and the analytic value of the integral. (Calculations should be correct to four decimal places).
Expert Solution
Step 1

Given integral is

0101ysinxdydx                 (1)

Here f(x, y)=ysinx

So f(xi, yj)=yjsinxi

Since there is two subintervals, step size will be h=k=0.5

So table is

 y                     x

 0 0.5 1
   0 0 0 0
  0.5 0 0.2397 0.4207
  1 0 0.4794 0..8415

Formula of trapezoidal rule for double integration is

x0x2y0y2fx,ydydx=hk4fx0,y0+2fx0,y1+fx0,y2+2fx1,y0+4fx1,y1+2fx1,y2+fx2,y0+2fx2,y1+fx2,y2

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,