[2.1.22] I have 51 rectangular pieces of cardboard, each of which has an integer length and width in the set {1,..., 100}. (Note that squares are allowed.) Prove that there are two rectangles such that one can fully cover the other when placed on top.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please solve within 30 minutes then I will give you thumps up

[2.1.22] I have 51 rectangular pieces of cardboard, each of which has an integer length and
width in the set {1,..., 100}. (Note that squares are allowed.) Prove that there are two
rectangles such that one can fully cover the other when placed on top.
Transcribed Image Text:[2.1.22] I have 51 rectangular pieces of cardboard, each of which has an integer length and width in the set {1,..., 100}. (Note that squares are allowed.) Prove that there are two rectangles such that one can fully cover the other when placed on top.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,