2. Which of the following are true and which are false? (I) For every u and the vector projection of u onto is equal to the vector projection of u onto 20. (II) (i + j) × (i − 3) =0 where = (1,0,0) and 7 = (0,1,0) - (III) (xv) = 0 for every pair of vectors u and 7. 140

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. Which of the following are true and which are false?
(I) For every u and the vector projection of u onto is equal to the vector projection
of u onto 20.
11
(II) (i+j) × (-3)=0 where = (1,0,0) and 7 = (0,1,0) -
(III) (xv) = 0 for every pair of vectors i and 7.
.
140
Transcribed Image Text:2. Which of the following are true and which are false? (I) For every u and the vector projection of u onto is equal to the vector projection of u onto 20. 11 (II) (i+j) × (-3)=0 where = (1,0,0) and 7 = (0,1,0) - (III) (xv) = 0 for every pair of vectors i and 7. . 140
Expert Solution
Step 1

(I).  

     Given that u & v are two vectors

     let, u= xi^+yj ^ and v= ai^+bj^

therefore, the projection of u onto v is -

                                           projvu=(u.vv2)v

                                                      = (ax+bya2+b2).(ai^+bj)^

now, if we take  u and 2v, 

then u= xi^+yj ^ and 2v= 2ai^+2bj^

therefore, the projection of u onto 2v is -

                                        proj2vu=(u.2v2v2)2v

                                                     = (2ax+2by4a2+4b2)·(2ai^+2bj)^

                                                     = (ax+bya2+b2)·(ai^+bj)^ =  projvu

Therefore, for every u and v the vector projection of u onto v is equal to the vector projection of u onto 2v.

so, given statement is TRUE.

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,