2. Using the ratio test, determine whether the following series are convergent or divergent: 1 1 1 (a) 32 33 34 + 3 (b) 3+ 35 2 +

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem 2: Applying the Ratio Test to Determine Convergence or Divergence of Series**

**Objective:**  
Use the ratio test to determine whether the following series are convergent or divergent.

**Series (a):**  
\[
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \cdots
\]

**Series (b):**  
\[
3 + \frac{3^2}{2} + \frac{3^3}{3} + \frac{3^4}{4} + \frac{3^5}{5} + \cdots
\]

**Instructions:**

1. Apply the ratio test, which involves calculating the limit:  
   \[
   L = \lim_{{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right|
   \]

2. Interpret the result:
   - If \( L < 1 \), the series is convergent.
   - If \( L > 1 \) or \( L\) is infinite, the series is divergent.
   - If \( L = 1 \), the test is inconclusive.
Transcribed Image Text:**Problem 2: Applying the Ratio Test to Determine Convergence or Divergence of Series** **Objective:** Use the ratio test to determine whether the following series are convergent or divergent. **Series (a):** \[ \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \cdots \] **Series (b):** \[ 3 + \frac{3^2}{2} + \frac{3^3}{3} + \frac{3^4}{4} + \frac{3^5}{5} + \cdots \] **Instructions:** 1. Apply the ratio test, which involves calculating the limit: \[ L = \lim_{{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \] 2. Interpret the result: - If \( L < 1 \), the series is convergent. - If \( L > 1 \) or \( L\) is infinite, the series is divergent. - If \( L = 1 \), the test is inconclusive.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning