2. Using data from Table, calculate the daily energy needs of a person who sleeps for 8.00 h, walks for 2.00 h, works in the office for 8 hours, does moderate physical work during 2 hours and lying awake for 4 hours. (suppose, that working in office consumes energy at the same rate as sitting upright.). Suppose that the person mass is 80-kg and his height 1.75m. 1. First law of thermodinamics AQ = AU + AW The first law of thermodynamics is a version of the law of conservation of energy The first law is often formulated by stating that the change in the internal energy AU of a closed system is equal to the amount of heat supplied to the system AQ, minus the amount of work done AW by the system on its surroundings. Units of work and energy are Joules(J) and calories (cal). Relationship between units 1 cal = 4.18 J and 1 Cal = 1000 cal = 4180 J Kinetic energy (J): KE = , here m is mass of a body (kg), v – speed of its motion(m/sec). 2. 3. Gravitational potential energy(J): PE = mgh, here m is mass of the body (kg); g = 9,8 m/sec? is acceleration due to gravity; h is height (m). Work W (J): 4. Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as: W = FAxcos0 , where W is work, Ax is the displacement of the system, and 6 is the angle between the force vector F and the displacement vector Ax. 5. Work – Energy theorem: The principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle: W = AKE = "-i, here v, is final velocity and v; is initial velocity. Let us calculate the work done in lifting an object of mass m through a height h. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is: W = APE = mgAh, here m is mass of the body (kg); g = 9,8 m/sec? is acceleration due to gravity; Ah is change in height. 6. Power P (W) is rate at which work is done: P = ", where W is work (J) and t is time. 7. Efficiency Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the energy input. The efficiency n of an energy conversion process is defined as 1 = - where W is useful energy or work output, E is total energy input, Q is heat or thermal w-Q energy. 8. Energy conversion in humans Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is needed to do work and stay warm, the remainder goes into body fat. carbohydrates and proteins K1 = 17,2 kJ/g =4.11 Cal/g fat K2 = 38,9 kJ/g=9.3 Cal/g. W (negative) Work OE Food Thermal energy energy OE, Stored fat OE, + W = OE,

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
2. Using data from Table, calculate the daily energy needs of a person who sleeps for 8.00 h, walks
for 2.00 h, works in the office for 8 hours, does moderate physical work during 2 hours and lying awake
for 4 hours. (suppose, that working in office consumes energy at the same rate as sitting upright.). Suppose
that the person mass is 80-kg and his height 1.75m.
Transcribed Image Text:2. Using data from Table, calculate the daily energy needs of a person who sleeps for 8.00 h, walks for 2.00 h, works in the office for 8 hours, does moderate physical work during 2 hours and lying awake for 4 hours. (suppose, that working in office consumes energy at the same rate as sitting upright.). Suppose that the person mass is 80-kg and his height 1.75m.
1. First law of thermodinamics AQ = AU + AW
The first law of thermodynamics is a version of the law of conservation of energy The first law is often
formulated by stating that the change in the internal energy AU of a closed system is equal to the amount
of heat supplied to the system AQ, minus the amount of work done AW by the system on its
surroundings.
Units of work and energy are Joules(J) and calories (cal).
Relationship between units 1 cal = 4.18 J and 1 Cal = 1000 cal = 4180 J
Kinetic energy (J): KE = , here m is mass of a body (kg), v – speed of its motion(m/sec).
2.
3. Gravitational potential energy(J): PE = mgh, here m is mass of the body (kg); g = 9,8 m/sec? is
acceleration due to gravity; h is height (m).
Work W (J):
4.
Formally, the work done on a system by a constant force is defined to be the product of the component
of the force in the direction of motion times the distance through which the force acts. For one-way motion
in one dimension, this is expressed in equation form as:
W = FAxcos0 , where W is work, Ax is the displacement of the system, and 6 is the angle between the
force vector F and the displacement vector Ax.
5. Work – Energy theorem: The principle of work and kinetic energy (also known as the work-energy
theorem) states that the work done by the sum of all forces acting on a particle equals the change in the
kinetic energy of the particle: W = AKE = "-i, here v, is final velocity and v; is initial velocity.
Let us calculate the work done in lifting an object of mass m through a height h. If the object is lifted
straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on
the mass is: W = APE = mgAh, here m is mass of the body (kg); g = 9,8 m/sec? is acceleration due to
gravity; Ah is change in height.
6. Power P (W) is rate at which work is done: P = ", where W is work (J) and t is time.
7. Efficiency Even though energy is conserved in an energy conversion process, the output of useful
energy or work will be less than the energy input. The efficiency n of an energy conversion process is
defined as 1 =
- where W is useful energy or work output, E is total energy input, Q is heat or thermal
w-Q
energy.
8. Energy conversion in humans
Our own bodies, like all living organisms, are energy conversion
machines. Conservation of energy implies that the chemical
energy stored in food is converted into work, thermal energy,
and/or stored as chemical energy in fatty tissue. The fraction
going into each form depends both on how much we eat and on
our level of physical activity. If we eat more than is needed to
do work and stay warm, the remainder goes into body fat.
carbohydrates and proteins K1 = 17,2 kJ/g =4.11 Cal/g
fat K2 = 38,9 kJ/g=9.3 Cal/g.
W (negative)
Work
OE
Food
Thermal
energy
energy
OE,
Stored
fat
OE, + W = OE,
Transcribed Image Text:1. First law of thermodinamics AQ = AU + AW The first law of thermodynamics is a version of the law of conservation of energy The first law is often formulated by stating that the change in the internal energy AU of a closed system is equal to the amount of heat supplied to the system AQ, minus the amount of work done AW by the system on its surroundings. Units of work and energy are Joules(J) and calories (cal). Relationship between units 1 cal = 4.18 J and 1 Cal = 1000 cal = 4180 J Kinetic energy (J): KE = , here m is mass of a body (kg), v – speed of its motion(m/sec). 2. 3. Gravitational potential energy(J): PE = mgh, here m is mass of the body (kg); g = 9,8 m/sec? is acceleration due to gravity; h is height (m). Work W (J): 4. Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as: W = FAxcos0 , where W is work, Ax is the displacement of the system, and 6 is the angle between the force vector F and the displacement vector Ax. 5. Work – Energy theorem: The principle of work and kinetic energy (also known as the work-energy theorem) states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle: W = AKE = "-i, here v, is final velocity and v; is initial velocity. Let us calculate the work done in lifting an object of mass m through a height h. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is: W = APE = mgAh, here m is mass of the body (kg); g = 9,8 m/sec? is acceleration due to gravity; Ah is change in height. 6. Power P (W) is rate at which work is done: P = ", where W is work (J) and t is time. 7. Efficiency Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the energy input. The efficiency n of an energy conversion process is defined as 1 = - where W is useful energy or work output, E is total energy input, Q is heat or thermal w-Q energy. 8. Energy conversion in humans Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is needed to do work and stay warm, the remainder goes into body fat. carbohydrates and proteins K1 = 17,2 kJ/g =4.11 Cal/g fat K2 = 38,9 kJ/g=9.3 Cal/g. W (negative) Work OE Food Thermal energy energy OE, Stored fat OE, + W = OE,
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON