2. Use the Fundamental Theorem of Calculus, (a) (b) (c) to evaluate the integrals: TT 3 sec x (secx + tan x) dx 0 11/3 50Th² secon ( See (in) + tance)) ok: 5²2 ( Sic² (17) + Selled kances aux = = [² ³ Sec col de + 1²³3 (seclis ton Max [sic²(x) dx = tante, (scoa ton²x) dx = => [tan (and ] == + [sec (x)}]} 0 = [tan () - tan/] + [See (5) - secilo)) = [13-0) +(2+] [*(4x5/2 + (4x5/2+3x3/2 - 2x¹/²) dx Cπ/6 [ (127 - 12/31 - cos x) dx x3 -3π/2 scelite) • See (x) ( =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Answer b and c. Also pls write out the answer so it will be easier to understand. Thank you! 

## Evaluating Integrals Using the Fundamental Theorem of Calculus

In this exercise, we will use the Fundamental Theorem of Calculus to evaluate the given integrals.

### Problem 2

#### (a)

Evaluate the integral:  

\[
\int_{0}^{\pi/3} \sec x (\sec x + \tan x) \, dx
\]

**Solution Steps:**

1. Expand the integrand:
   \[
   \sec x (\sec x + \tan x) = \sec^2 x + \sec x \tan x
   \]

2. Integrate term by term:
   \[
   \int_{0}^{\pi/3} \sec^2 x \, dx + \int_{0}^{\pi/3} \sec x \tan x \, dx
   \]

3. Evaluate each integral:
   - \(\int \sec^2 x \, dx = \tan x\)  
   - \(\int \sec x \tan x \, dx = \sec x\)

4. Apply the limits:
   \[
   \left[ \tan x \right]_0^{\pi/3} + \left[ \sec x \right]_0^{\pi/3} = \left( \sqrt{3} - 0 \right) + \left(2 - 1\right) = \sqrt{3} + 1
   \]

The handwritten note confirms this result:  
\[
\int_{0}^{\pi/3} \sec x (\sec x + \tan x) \, dx = \sqrt{3} + 1
\]

#### (b)

Evaluate the integral:  

\[
\int_{1}^{4} (4x^{5/2} + 3x^{3/2} - 2x^{1/2}) \, dx
\]

Evaluate each term using the antiderivative of \(x^n\), which is \(\frac{x^{n+1}}{n+1}\).

#### (c)

Evaluate the integral:

\[
\int_{-3\pi/2}^{\pi/6} \left( \frac{1}{x^2} - \frac{1}{x^3} - \cos x \right) \, dx 
\]

Evaluate each term separately using standard integration techniques
Transcribed Image Text:## Evaluating Integrals Using the Fundamental Theorem of Calculus In this exercise, we will use the Fundamental Theorem of Calculus to evaluate the given integrals. ### Problem 2 #### (a) Evaluate the integral: \[ \int_{0}^{\pi/3} \sec x (\sec x + \tan x) \, dx \] **Solution Steps:** 1. Expand the integrand: \[ \sec x (\sec x + \tan x) = \sec^2 x + \sec x \tan x \] 2. Integrate term by term: \[ \int_{0}^{\pi/3} \sec^2 x \, dx + \int_{0}^{\pi/3} \sec x \tan x \, dx \] 3. Evaluate each integral: - \(\int \sec^2 x \, dx = \tan x\) - \(\int \sec x \tan x \, dx = \sec x\) 4. Apply the limits: \[ \left[ \tan x \right]_0^{\pi/3} + \left[ \sec x \right]_0^{\pi/3} = \left( \sqrt{3} - 0 \right) + \left(2 - 1\right) = \sqrt{3} + 1 \] The handwritten note confirms this result: \[ \int_{0}^{\pi/3} \sec x (\sec x + \tan x) \, dx = \sqrt{3} + 1 \] #### (b) Evaluate the integral: \[ \int_{1}^{4} (4x^{5/2} + 3x^{3/2} - 2x^{1/2}) \, dx \] Evaluate each term using the antiderivative of \(x^n\), which is \(\frac{x^{n+1}}{n+1}\). #### (c) Evaluate the integral: \[ \int_{-3\pi/2}^{\pi/6} \left( \frac{1}{x^2} - \frac{1}{x^3} - \cos x \right) \, dx \] Evaluate each term separately using standard integration techniques
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning