2. use Table 9.1 to find the inverse Laplace transform L-" {FlS1}, where Fis) = 82 -46-4 Table of Laplace Transforms S(1) = L*{F(s)}_F(s) = L{f(!} S(1) = L*{F(s}} F(s) =£{S(1)} 1. 1 2. e S-a n! r(p+1) 3. ", n=1,2,3,... 4. ',p>-1 6. , n=1,2,3,.. 1-3-5.-(2n –1)/« 5. a sin (at) 8. cos(at) 7. 2as s-a 9. tsin(at) 10. t cos(at) 2a 2as 11. sin(ar)– at cos(at) 12. sin(at)+at cos(at) 13. cos(at) – at sin (at) 14. cos(at)+ at sin(at) 15. sin(at + b) ssin (b) + acos(b) 16. cos(at +b) s cos(b) – a sin(b) 17. sinh(at) 18. cosh(at) S-a 19. e" sin(bt) (s-a) +b² | 20. e" cos(bt) (s-a) +b² S-a 21. e“ sinh(bt) 22. " cosh(br) (s-a) -b² (s-a)* -b² n! 23. "e", n=1,2,3,... | 24. S(ct) (s-a)™ 25. 4.(1) = «(1 -c) 8(1-c) e Heaviside Function 27. u.(1)S(1-c) 29. e"f(1) 26. Dirac Delta Function 28. и. ():() 30. "S(1), n= 1,2,3,... e"e{g(t+c)} (-1)" F®) (s) F(s) e"F(s) F(s-c) 31. 10) 32. S(^)dv 33. s(1-1)8(t)dt F(s)G(s) 34. S(1+T)= f(1) 1-e 36. S"(1) 35. Г() 37. f(t) sF(s)- f(0) s*F(s)-sf (0)– f'(0) s'F(s)-s*!f(0)-s*?s (0)..--sgte"(0)- ~-"(0)
2. use Table 9.1 to find the inverse Laplace transform L-" {FlS1}, where Fis) = 82 -46-4 Table of Laplace Transforms S(1) = L*{F(s)}_F(s) = L{f(!} S(1) = L*{F(s}} F(s) =£{S(1)} 1. 1 2. e S-a n! r(p+1) 3. ", n=1,2,3,... 4. ',p>-1 6. , n=1,2,3,.. 1-3-5.-(2n –1)/« 5. a sin (at) 8. cos(at) 7. 2as s-a 9. tsin(at) 10. t cos(at) 2a 2as 11. sin(ar)– at cos(at) 12. sin(at)+at cos(at) 13. cos(at) – at sin (at) 14. cos(at)+ at sin(at) 15. sin(at + b) ssin (b) + acos(b) 16. cos(at +b) s cos(b) – a sin(b) 17. sinh(at) 18. cosh(at) S-a 19. e" sin(bt) (s-a) +b² | 20. e" cos(bt) (s-a) +b² S-a 21. e“ sinh(bt) 22. " cosh(br) (s-a) -b² (s-a)* -b² n! 23. "e", n=1,2,3,... | 24. S(ct) (s-a)™ 25. 4.(1) = «(1 -c) 8(1-c) e Heaviside Function 27. u.(1)S(1-c) 29. e"f(1) 26. Dirac Delta Function 28. и. ():() 30. "S(1), n= 1,2,3,... e"e{g(t+c)} (-1)" F®) (s) F(s) e"F(s) F(s-c) 31. 10) 32. S(^)dv 33. s(1-1)8(t)dt F(s)G(s) 34. S(1+T)= f(1) 1-e 36. S"(1) 35. Г() 37. f(t) sF(s)- f(0) s*F(s)-sf (0)– f'(0) s'F(s)-s*!f(0)-s*?s (0)..--sgte"(0)- ~-"(0)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,