2. Use Parseval's formula and a suitable Fourier series to sum 2n=1 (2n–1)? · 1 Hint: Look at Table 5.1. in the lecture notes.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. Use Parseval's formula and a suitable Fourier series to sum 2n=1 (2n–1)? ·
1
Hint: Look at Table 5.1. in the lecture notes.
Transcribed Image Text:2. Use Parseval's formula and a suitable Fourier series to sum 2n=1 (2n–1)? · 1 Hint: Look at Table 5.1. in the lecture notes.
Table 5.1: Examples of Fourier series
f(x)
žao +
(an cos nx + b, sin nx)
n=1
sin nx
i)
x, 0<x < T
E(-1)n+1!
n
n=1
sin nx
ii)
(T – x), 0< x < T
n
n=1
iii) T, 0<x < T
sin(2n – 1)x
2n – 1
n=1
2(-1)a-1 Cos(2n – 1)x
2n – 1
0 <x < T
iv)
(-7, T < x < T
n=1
Cos na
v)
(T? – 3x?), 0 < x < T
E(-1)--1!
n2
n=1
Cos nx
vi) (T – 2)? – 7?, 0< x < a
n2
n=1
.cos(2n – 1)x
(2n – 1)2
vii) 7(T – 2), 0< x < ™
n=1
2(-1)a-1 sin(2n – 1)x
(2n – 1)2
0 < x < }T
viii)
{#(7 – x), T< x < a
|
n=1
Transcribed Image Text:Table 5.1: Examples of Fourier series f(x) žao + (an cos nx + b, sin nx) n=1 sin nx i) x, 0<x < T E(-1)n+1! n n=1 sin nx ii) (T – x), 0< x < T n n=1 iii) T, 0<x < T sin(2n – 1)x 2n – 1 n=1 2(-1)a-1 Cos(2n – 1)x 2n – 1 0 <x < T iv) (-7, T < x < T n=1 Cos na v) (T? – 3x?), 0 < x < T E(-1)--1! n2 n=1 Cos nx vi) (T – 2)? – 7?, 0< x < a n2 n=1 .cos(2n – 1)x (2n – 1)2 vii) 7(T – 2), 0< x < ™ n=1 2(-1)a-1 sin(2n – 1)x (2n – 1)2 0 < x < }T viii) {#(7 – x), T< x < a | n=1
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,