2. Use Newton-Raphson method to solve x - cos x = 0, [0, π/2].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Answer the following within 10-5.
Please use the method that being used i inserted in the images. 

2. Use Newton-Raphson method to solve x - cos x = 0, [0, π/2].

Newdon Raphson Method
txample: Solve thc equation
Table:
Iteration
3.0000
C 3154
w/ rool in the interval (3,5]
(in 4 decimal places)
f(x):0
C. 3154
5. 4141
4. 1SI6
y=fu)
5. 4141
4.7516
3
4.2011
Solution : initial
valuc = 3
4.2011
3.887
9.8687
3.7479
3.7479
f(x)
fa) = e-6x
=e- 3x= o
Po
Pi
3-7333
3-7333
3. 1331
f (P.)
3. 7331
3-73311
f'(xa)
IHerations
3.00
e
3 -
6 3154
3
- ((3)
4.3154
6:3154
3(+3154)
: 5.9741
6.3154 -e
63154
e
5.434
e
3(5.4794)
5.4741
5.4741=
=47516
S 4741
e
-((5.4741)
Transcribed Image Text:Newdon Raphson Method txample: Solve thc equation Table: Iteration 3.0000 C 3154 w/ rool in the interval (3,5] (in 4 decimal places) f(x):0 C. 3154 5. 4141 4. 1SI6 y=fu) 5. 4141 4.7516 3 4.2011 Solution : initial valuc = 3 4.2011 3.887 9.8687 3.7479 3.7479 f(x) fa) = e-6x =e- 3x= o Po Pi 3-7333 3-7333 3. 1331 f (P.) 3. 7331 3-73311 f'(xa) IHerations 3.00 e 3 - 6 3154 3 - ((3) 4.3154 6:3154 3(+3154) : 5.9741 6.3154 -e 63154 e 5.434 e 3(5.4794) 5.4741 5.4741= =47516 S 4741 e -((5.4741)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,