2. Use Laplace transform to solve y" + y = 6(t – 27) cos(t) y(0) = 0, y'(0) = 1 %3D %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. Use Laplace transform to solve
y" + y = 6(t – 27) cos(t)
y(0) = 0, y'(0) = 1
%3D
%3D
Transcribed Image Text:2. Use Laplace transform to solve y" + y = 6(t – 27) cos(t) y(0) = 0, y'(0) = 1 %3D %3D
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

This is an alternate solution/method. What went wrong?

y"+y= S(t-28) cast , yloj= 0, L'10) =1
Taking oplace transfom on bath sides;
L[ y"ty]= L[S(t- 2x) Cost)
2
> se YCS)-sy l0)- y'lo)+ Y(S) = é"
Cos 2 t
(*: L[ fH) ult-a)] = é ? f(a))
as
(s*+) Y(5) - Sx0 -) ニ
2
it.
(6+1) YIS) = e
275
(: Ca82=1)
Taking beth sides;
in verse laplace on
e
こ
y(t) =
ft) Ult-27) + sint
cshene f(t)=
sin (t2T), t> 2
tく 2オ
And ult-27) s on voit step function
sint. Ult -27) +
y (t) = sint.Ult-27)+ Sint
Transcribed Image Text:y"+y= S(t-28) cast , yloj= 0, L'10) =1 Taking oplace transfom on bath sides; L[ y"ty]= L[S(t- 2x) Cost) 2 > se YCS)-sy l0)- y'lo)+ Y(S) = é" Cos 2 t (*: L[ fH) ult-a)] = é ? f(a)) as (s*+) Y(5) - Sx0 -) ニ 2 it. (6+1) YIS) = e 275 (: Ca82=1) Taking beth sides; in verse laplace on e こ y(t) = ft) Ult-27) + sint cshene f(t)= sin (t2T), t> 2 tく 2オ And ult-27) s on voit step function sint. Ult -27) + y (t) = sint.Ult-27)+ Sint
Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,