2. Use Laplace transform to solve y" + y = 6(t – 27) cos(t) y(0) = 0, y'(0) = 1 %3D %3D
2. Use Laplace transform to solve y" + y = 6(t – 27) cos(t) y(0) = 0, y'(0) = 1 %3D %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![2. Use Laplace transform to solve
y" + y = 6(t – 27) cos(t)
y(0) = 0, y'(0) = 1
%3D
%3D](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe02838e7-dc45-4607-88b3-6692c936110a%2Fa6776947-255f-406a-a7e9-a624bb3136d5%2Fvdhq0q_processed.png&w=3840&q=75)
Transcribed Image Text:2. Use Laplace transform to solve
y" + y = 6(t – 27) cos(t)
y(0) = 0, y'(0) = 1
%3D
%3D
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
This is an alternate solution/method. What went wrong?
![y"+y= S(t-28) cast , yloj= 0, L'10) =1
Taking oplace transfom on bath sides;
L[ y"ty]= L[S(t- 2x) Cost)
2
> se YCS)-sy l0)- y'lo)+ Y(S) = é"
Cos 2 t
(*: L[ fH) ult-a)] = é ? f(a))
as
(s*+) Y(5) - Sx0 -) ニ
2
it.
(6+1) YIS) = e
275
(: Ca82=1)
Taking beth sides;
in verse laplace on
e
こ
y(t) =
ft) Ult-27) + sint
cshene f(t)=
sin (t2T), t> 2
tく 2オ
And ult-27) s on voit step function
sint. Ult -27) +
y (t) = sint.Ult-27)+ Sint](https://content.bartleby.com/qna-images/question/e02838e7-dc45-4607-88b3-6692c936110a/706f66b3-8f1b-4e68-a63e-39f730ff5add/bil70xh_thumbnail.jpeg)
Transcribed Image Text:y"+y= S(t-28) cast , yloj= 0, L'10) =1
Taking oplace transfom on bath sides;
L[ y"ty]= L[S(t- 2x) Cost)
2
> se YCS)-sy l0)- y'lo)+ Y(S) = é"
Cos 2 t
(*: L[ fH) ult-a)] = é ? f(a))
as
(s*+) Y(5) - Sx0 -) ニ
2
it.
(6+1) YIS) = e
275
(: Ca82=1)
Taking beth sides;
in verse laplace on
e
こ
y(t) =
ft) Ult-27) + sint
cshene f(t)=
sin (t2T), t> 2
tく 2オ
And ult-27) s on voit step function
sint. Ult -27) +
y (t) = sint.Ult-27)+ Sint
Solution
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)