2. Use a geometric formula to determine the area of the region given by f: V25 – x5dx. -5

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
Solve.
**Problem 2:** Use a geometric formula to determine the area of the region given by the integral:

\[
\int_{-5}^{5} \sqrt{25 - x^2} \, dx.
\]

This problem involves finding the area enclosed under the curve defined by the function \(y = \sqrt{25 - x^2}\) from \(x = -5\) to \(x = 5\). The expression \(\sqrt{25 - x^2}\) represents the equation of a semicircle with radius 5 centered on the x-axis. Therefore, the area can be calculated using the formula for the area of a circle (\(\pi r^2\)), considering only the upper half:

- **Radius**: 5
- **Area of the full circle**: \(\pi \times 5^2 = 25\pi\)
- **Area of the semicircle**: \(\frac{1}{2} \times 25\pi = \frac{25\pi}{2}\)

Thus, the area of the region described by the integral is \(\frac{25\pi}{2}\).
Transcribed Image Text:**Problem 2:** Use a geometric formula to determine the area of the region given by the integral: \[ \int_{-5}^{5} \sqrt{25 - x^2} \, dx. \] This problem involves finding the area enclosed under the curve defined by the function \(y = \sqrt{25 - x^2}\) from \(x = -5\) to \(x = 5\). The expression \(\sqrt{25 - x^2}\) represents the equation of a semicircle with radius 5 centered on the x-axis. Therefore, the area can be calculated using the formula for the area of a circle (\(\pi r^2\)), considering only the upper half: - **Radius**: 5 - **Area of the full circle**: \(\pi \times 5^2 = 25\pi\) - **Area of the semicircle**: \(\frac{1}{2} \times 25\pi = \frac{25\pi}{2}\) Thus, the area of the region described by the integral is \(\frac{25\pi}{2}\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning