2. trace. Let n = 4 (we choose 4 for calculation simplicity, but the following are true for arbitrary n). Consider the following linear transformation: : R +R a11 a12 a13 ain ... a21 a22 a23 a2n ... a32 Ha11 + a22 + a33 +...+ ann = > ai. a31 a33 ... i=1 an2 An3 ann ... anl Let In be the n x n identity matrix (or equivalently, a vector in R"). Calculate (A) that tr(In) = = n. Let A, B be two n x n matrices (or equivalently, a vector in Rn*). Calculate that (B) tr(AB) = tr(BA). Hint. Write A = [aj] and B = [br1]. Write down the diagonal of AB and BA in terms of aij and brl. Then compute tr(AB) and tr(BA).
2. trace. Let n = 4 (we choose 4 for calculation simplicity, but the following are true for arbitrary n). Consider the following linear transformation: : R +R a11 a12 a13 ain ... a21 a22 a23 a2n ... a32 Ha11 + a22 + a33 +...+ ann = > ai. a31 a33 ... i=1 an2 An3 ann ... anl Let In be the n x n identity matrix (or equivalently, a vector in R"). Calculate (A) that tr(In) = = n. Let A, B be two n x n matrices (or equivalently, a vector in Rn*). Calculate that (B) tr(AB) = tr(BA). Hint. Write A = [aj] and B = [br1]. Write down the diagonal of AB and BA in terms of aij and brl. Then compute tr(AB) and tr(BA).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![2.
trace.
Let n = 4 (we choose 4 for calculation simplicity, but the following are true for arbitrary n).
Consider the following linear transformation:
tr : R" +R
a11
a12
a13
ain
...
a22
a23
a2n
...
a21
a32
a33
Ha11 + a22 + a33 +
...+ ann =
...
a31
i=1
An3
ann
...
anl
an2
Let In be the n x n identity matrix (or equivalently, a vector in R""). Calculate
(A)
that tr(In) = n.
Let A, B be two n x n matrices (or equivalently, a vector in Rn*). Calculate that
(B)
tr(AB) = tr(BA).
Hint. Write A = [aj] and B = [br1]. Write down the diagonal of AB and BA in terms of aij
and bri. Then compute tr(AB) and tr(BA).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Facdec92e-028d-4f37-af60-841922a4cee5%2Fdd94c591-b732-4b99-8070-32c7c110adab%2F03b1di_processed.png&w=3840&q=75)
Transcribed Image Text:2.
trace.
Let n = 4 (we choose 4 for calculation simplicity, but the following are true for arbitrary n).
Consider the following linear transformation:
tr : R" +R
a11
a12
a13
ain
...
a22
a23
a2n
...
a21
a32
a33
Ha11 + a22 + a33 +
...+ ann =
...
a31
i=1
An3
ann
...
anl
an2
Let In be the n x n identity matrix (or equivalently, a vector in R""). Calculate
(A)
that tr(In) = n.
Let A, B be two n x n matrices (or equivalently, a vector in Rn*). Calculate that
(B)
tr(AB) = tr(BA).
Hint. Write A = [aj] and B = [br1]. Write down the diagonal of AB and BA in terms of aij
and bri. Then compute tr(AB) and tr(BA).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

