2. Suppose you want to estimate the following model: Reorders, = B + A · Products + ß · Days where Reorders, is the number of reorders. Products is the number of ordered products. Days, is the number of days since the last order. Using Excel, you have the following output: SUMMARY OUTPUT Regression Statistics Multiple R 0.8373 R Square 0.7010 Adjusted R Square 0.6998 Standard Error 3.1710 Observations 500 ANOVA df SS MS Significance F Regression 11717.33 5858.67 582.66 0.00 Residual 497 4997.38 10.06 Total 499 16714.71 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept products days since prior orde 0.9778 0.3416 2.8623 0.0044 0.3066 1.6489 0.6333 0.0188 33.6482 0.0000 0.5963 0.6703 -0.0653 0.0333 -4.9207 0.0000 -0.0914 -0.0392 (a) Report regression results, what are 6? 6? What are Standard Errors of 6? 6? B? What are their 95% Confidence Intervals?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Part a please
**Problem Set 2-1: Analyzing Regression Models**

In this task, you are asked to estimate the following regression model:

\[ 
\text{Reorders} = \beta_0 + \beta_1 \cdot \text{Products} + \beta_2 \cdot \text{Days} 
\]

Where:
- **Reorders**: The number of reorders.
- **Products**: The number of ordered products.
- **Days**: The number of days since the last order.

Using Excel, the output generated is as follows:

**Summary Output:**

- **Regression Statistics**
  - **Multiple R**: 0.8373
  - **R Square**: 0.7010
  - **Adjusted R Square**: 0.6998
  - **Standard Error**: 3.1710
  - **Observations**: 500

**ANOVA Table:**

- **df**: Degrees of freedom
  - Regression: 2
  - Residual: 497
  - Total: 499
- **SS**: Sum of Squares
  - Regression: 11717.33
  - Residual: 4997.38
  - Total: 16714.71
- **MS**: Mean Square
  - Regression: 5858.67
  - Residual: 10.06
- **F**: F-statistic: 582.66
- **Significance F**: 0.00

**Coefficients Table:**

| Coefficient            | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|------------------------|----------------|---------|---------|-----------|-----------|
| Intercept              | 0.9778         | 0.3416  | 2.8623  | 0.0044    | 0.3066    | 1.6489    |
| Products               | 0.6333         | 0.0188  | 33.6482 | 0.0000    | 0.5953    | 0.6703    |
| Days since prior order | -0.0653        | 0.0133  | -4.9207 | 0.0000    | -0.0914   |
Transcribed Image Text:**Problem Set 2-1: Analyzing Regression Models** In this task, you are asked to estimate the following regression model: \[ \text{Reorders} = \beta_0 + \beta_1 \cdot \text{Products} + \beta_2 \cdot \text{Days} \] Where: - **Reorders**: The number of reorders. - **Products**: The number of ordered products. - **Days**: The number of days since the last order. Using Excel, the output generated is as follows: **Summary Output:** - **Regression Statistics** - **Multiple R**: 0.8373 - **R Square**: 0.7010 - **Adjusted R Square**: 0.6998 - **Standard Error**: 3.1710 - **Observations**: 500 **ANOVA Table:** - **df**: Degrees of freedom - Regression: 2 - Residual: 497 - Total: 499 - **SS**: Sum of Squares - Regression: 11717.33 - Residual: 4997.38 - Total: 16714.71 - **MS**: Mean Square - Regression: 5858.67 - Residual: 10.06 - **F**: F-statistic: 582.66 - **Significance F**: 0.00 **Coefficients Table:** | Coefficient | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |------------------------|----------------|---------|---------|-----------|-----------| | Intercept | 0.9778 | 0.3416 | 2.8623 | 0.0044 | 0.3066 | 1.6489 | | Products | 0.6333 | 0.0188 | 33.6482 | 0.0000 | 0.5953 | 0.6703 | | Days since prior order | -0.0653 | 0.0133 | -4.9207 | 0.0000 | -0.0914 |
Expert Solution
Step 1

Solution

In the question excel output is given and we have to find estimate with standard error with 95% CI.

 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman