2. let where a) why why be ([^]) = [24] 2x L: IR→ L did we use just ь) із sketch Sketch the the linear word transformation images " √ = [2], * [³], [²] Label operator ketel on this "Operator" here? ? 3 of 3, 3, W on plane [* same Planes Lat
2. let where a) why why be ([^]) = [24] 2x L: IR→ L did we use just ь) із sketch Sketch the the linear word transformation images " √ = [2], * [³], [²] Label operator ketel on this "Operator" here? ? 3 of 3, 3, W on plane [* same Planes Lat
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Sure! Here’s a transcription suitable for an educational website:
---
**Problem 2: Linear Operator and Vector Sketching**
Let \( L: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear operator where
\[
L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2y \\ 2x \end{pmatrix}
\]
**a) Terminology Question:**
Why did we use the word "operator" here? Why not just "transformation"?
**b) Vector Sketching:**
1. Sketch the vectors \(\vec{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}\), and \(\vec{w} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}\). Label them.
2. Sketch the images of \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) on the same plane. Label them.
(*Note: The sketches should be done on the provided Cartesian plane.*)
**c) Visual Analysis:**
Describe what happened visually to the size and position of all the vectors.
---
**Explanation for the Diagram:**
The provided coordinate plane is a simple Cartesian grid where vectors will be plotted. Begin by plotting the original vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\). Then, apply the linear operator \(L\) to these vectors to obtain their images, and plot these new vectors on the same grid.
For example, to find the image of \(\vec{u}\) under \(L\), compute:
\[
L\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2(2) \\ 2(1) \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}
\]
Repeat similar calculations for \(\vec{v}\) and \(\vec{w}\). Analyze how the vectors' positions change and note any differences in size or direction.
---](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0f5c8177-d167-495b-a75f-4d9ab8b89388%2F781f80d6-00f5-48d6-ace1-122919322b57%2Fidhahb8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Sure! Here’s a transcription suitable for an educational website:
---
**Problem 2: Linear Operator and Vector Sketching**
Let \( L: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear operator where
\[
L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2y \\ 2x \end{pmatrix}
\]
**a) Terminology Question:**
Why did we use the word "operator" here? Why not just "transformation"?
**b) Vector Sketching:**
1. Sketch the vectors \(\vec{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\), \(\vec{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}\), and \(\vec{w} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}\). Label them.
2. Sketch the images of \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) on the same plane. Label them.
(*Note: The sketches should be done on the provided Cartesian plane.*)
**c) Visual Analysis:**
Describe what happened visually to the size and position of all the vectors.
---
**Explanation for the Diagram:**
The provided coordinate plane is a simple Cartesian grid where vectors will be plotted. Begin by plotting the original vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\). Then, apply the linear operator \(L\) to these vectors to obtain their images, and plot these new vectors on the same grid.
For example, to find the image of \(\vec{u}\) under \(L\), compute:
\[
L\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2(2) \\ 2(1) \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}
\]
Repeat similar calculations for \(\vec{v}\) and \(\vec{w}\). Analyze how the vectors' positions change and note any differences in size or direction.
---
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)