2. Let II be the plane given by the equation x+ 2yi+32 = 0. (A) Determine the orthogonal projection of the pDint P = {1,1,1) on II. (b) Determine an equation (in parameter form) for the line that is orthogonal towards || and PASses through P.P.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

see both picture one is original and other one is translated 

2. Let Il be the plane given by the equation x+ 2Y,+32 = 0.
(A) Determine the erthagonal projection of the point P = (1,1,1) on 1I.
(b) Determine an equation (in parameter form) for the line that is orthogonal
towards || and pASses through P.P.
Transcribed Image Text:2. Let Il be the plane given by the equation x+ 2Y,+32 = 0. (A) Determine the erthagonal projection of the point P = (1,1,1) on 1I. (b) Determine an equation (in parameter form) for the line that is orthogonal towards || and pASses through P.P.
2. Låt II vara planet som ges av ekvationen x + 2y + 3z = 0.
(a) Bestäm den ortogonala projektionen av punkten P = (1, 1, 1) på II.
(b) Bestäm en ekvation (på parameterform) för linjen som är ortogonal
mot II och går genom P.
Transcribed Image Text:2. Låt II vara planet som ges av ekvationen x + 2y + 3z = 0. (a) Bestäm den ortogonala projektionen av punkten P = (1, 1, 1) på II. (b) Bestäm en ekvation (på parameterform) för linjen som är ortogonal mot II och går genom P.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Translations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,