2. Let F = (-y/2, x/2), and let C be the curve shown below. What is F ds? Explain %3D why. y 1 1 2 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
2. Let F = (-y/2, x/2), and let C be the curve shown below. What is F.ds? Explain
%3D
why.
y
2
C
3
Transcribed Image Text:2. Let F = (-y/2, x/2), and let C be the curve shown below. What is F.ds? Explain %3D why. y 2 C 3
Expert Solution
Solution:

The vector field is F=-y2, x2

C1:0, 02, 0rt=2t, 0, r't=2, 0

F=0, t

Hence, the integral becomes C1F·dr=010, t·2, 0dt=0 

C2:2, 02, 1rt=2, t, r't=0, 1

F=-t2, 1

Hence, the integral becomes C2F·dr=01-t2, 1·0, 1dt=1

 

It follows

C3:2, 13, 1rt=2+t, 1, r't=1, 0

F=-12, 2+t2

Hence, the integral becomes C3F·dr=01-12, 2+t2·1, 0dt=-12

C4:3, 13, 2rt=3, 1+t, r't=0, 1

F=-1+t2, 32

Hence, the integral becomes C4F·dr=01-1+t2, 32·0, 1dt=32

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,