2. Let (2n) and (yn) be Cauchy sequences of real numbers. Define (Tn) to be equivalent to (yn), written (n)~ (yn), if lim Tn - yn = 0. 14x Show that this defines an equivalence relation on the set of all Cauchy sequences of real numbers. Furthermore, prove that if (rn) and (yn) are Cauchy sequences, then ||æn - Yn|-|Tm - Ym|| ≤ n - Tm+ Ym-Yn- Conclude that (n - Yn) is a Cauchy sequence.
2. Let (2n) and (yn) be Cauchy sequences of real numbers. Define (Tn) to be equivalent to (yn), written (n)~ (yn), if lim Tn - yn = 0. 14x Show that this defines an equivalence relation on the set of all Cauchy sequences of real numbers. Furthermore, prove that if (rn) and (yn) are Cauchy sequences, then ||æn - Yn|-|Tm - Ym|| ≤ n - Tm+ Ym-Yn- Conclude that (n - Yn) is a Cauchy sequence.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Question 2 in the attached image.
![2. Let (an) and (yn) be Cauchy sequences of real numbers. Define (rn) to be equivalent to (yn), written
(xn) ~ (Yn), if
lim n – Yn| = 0.
Show that this defines an equivalence relation on the set of all Cauchy sequences of real numbers.
Furthermore, prove that if (an) and (Yn) are Cauchy sequences, then
||an – Yn| – |æm – Ym|| < |æn – m| + |Ym – Yn|-
Conclude that (|æn – Yn|) is a Cauchy sequence.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F60376414-a2ea-43c4-9458-9e08e3951006%2F6b7b04b5-103d-4e7d-b91b-01698d3ba7e1%2Fpuj7lldi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. Let (an) and (yn) be Cauchy sequences of real numbers. Define (rn) to be equivalent to (yn), written
(xn) ~ (Yn), if
lim n – Yn| = 0.
Show that this defines an equivalence relation on the set of all Cauchy sequences of real numbers.
Furthermore, prove that if (an) and (Yn) are Cauchy sequences, then
||an – Yn| – |æm – Ym|| < |æn – m| + |Ym – Yn|-
Conclude that (|æn – Yn|) is a Cauchy sequence.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)