2. Inverse Laplace Transform Find the inverse Laplace transform of the following functions (a). F(s) = 2+35-4 s²+3s-4 2 2 1 1 F(s) = = = (s - 4) (s + 1) S- 4 s+1 2s+4 (b). F(s) = s²+2s+5€ -2s f(t) = (e" - e'). 2s +4 s²+2s+5 whose inverse Laplace transform is -t 2(s+1)+2 = (s+1)²+22 2e cos(2t) + et sin(2t) By checking the table, f(t) is the shifted version of this function. f(t)=(2e (2) cos(2(t − 2)) + e-(-2) sin(2(t − 2)))u2(t).
2. Inverse Laplace Transform Find the inverse Laplace transform of the following functions (a). F(s) = 2+35-4 s²+3s-4 2 2 1 1 F(s) = = = (s - 4) (s + 1) S- 4 s+1 2s+4 (b). F(s) = s²+2s+5€ -2s f(t) = (e" - e'). 2s +4 s²+2s+5 whose inverse Laplace transform is -t 2(s+1)+2 = (s+1)²+22 2e cos(2t) + et sin(2t) By checking the table, f(t) is the shifted version of this function. f(t)=(2e (2) cos(2(t − 2)) + e-(-2) sin(2(t − 2)))u2(t).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Can you show step by step how to solve these
![2. Inverse Laplace Transform
Find the inverse Laplace transform of the following functions
(a). F(s) = 2+35-4
s²+3s-4
2
2
1
1
F(s) =
=
=
(s - 4) (s + 1)
S-
4
s+1
2s+4
(b). F(s) = s²+2s+5€
-2s
f(t) = (e" - e').
2s +4
s²+2s+5
whose inverse Laplace transform is
-t
2(s+1)+2
=
(s+1)²+22
2e cos(2t) + et sin(2t)
By checking the table, f(t) is the shifted version of this function.
f(t)=(2e (2) cos(2(t − 2)) + e-(-2) sin(2(t − 2)))u2(t).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6e532244-1a69-487f-88f4-10ae0a919295%2Fca1160db-c01d-4e3f-bb02-68bf1af380ea%2Fepwsims_processed.png&w=3840&q=75)
Transcribed Image Text:2. Inverse Laplace Transform
Find the inverse Laplace transform of the following functions
(a). F(s) = 2+35-4
s²+3s-4
2
2
1
1
F(s) =
=
=
(s - 4) (s + 1)
S-
4
s+1
2s+4
(b). F(s) = s²+2s+5€
-2s
f(t) = (e" - e').
2s +4
s²+2s+5
whose inverse Laplace transform is
-t
2(s+1)+2
=
(s+1)²+22
2e cos(2t) + et sin(2t)
By checking the table, f(t) is the shifted version of this function.
f(t)=(2e (2) cos(2(t − 2)) + e-(-2) sin(2(t − 2)))u2(t).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)