2. In a class, 15% of the students is expected to fail. Examination marks are roughly distributed, with a mean of 72 and a standard deviation of 6. a. What mark must a student make to pass? b. What percent of the class is included between marks 75 and 80? c. What is the probability of getting a mark higher than 80? d. Within what two marks can we expect the middle 95% of the cases to led?
2. In a class, 15% of the students is expected to fail. Examination marks are roughly distributed, with a mean of 72 and a standard deviation of 6. a. What mark must a student make to pass? b. What percent of the class is included between marks 75 and 80? c. What is the probability of getting a mark higher than 80? d. Within what two marks can we expect the middle 95% of the cases to led?
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
![2. In a class, 15% of the students is expected to fail. Examination marks are
roughly distributed, with a mean of 72 and a standard deviation of 6.
a. What mark must a student make to pass?
b. What percent of the class is included between marks 75 and 80?
c. What is the probability of getting a mark higher than 80?
d. Within what two marks can we expect the middle 95% of the cases to
be included?
e.
What two marks are so extreme that only 1% of the class is expected to
fall beyond them?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb96fef84-8b97-4fb1-a206-a575fc1ea17c%2F1ea79c2c-7c48-427d-a1c5-5fa52e6dcc62%2Fabw5wd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. In a class, 15% of the students is expected to fail. Examination marks are
roughly distributed, with a mean of 72 and a standard deviation of 6.
a. What mark must a student make to pass?
b. What percent of the class is included between marks 75 and 80?
c. What is the probability of getting a mark higher than 80?
d. Within what two marks can we expect the middle 95% of the cases to
be included?
e.
What two marks are so extreme that only 1% of the class is expected to
fall beyond them?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)