2. gxc2x2+3 dx Selast & du 니 get x in terms of u ut 2x2 +3 4-3 = ㄹ x² 4-3 x = 이들 4-3 z soke har x 4:2x2+3 du = 4x dx du =qy dx ax: 심 수 (m) 혜수 du du V2 + [(4-3)^² ^"] 나를) +[(*)* - (³›*]. · -(를)].

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
I need help with this integration by substituting problem.
## Integration by Substitution

### Problem 2: 

Evaluate the integral of \(x(2x^2 + 3)^4 dx\).

### Solution:

1. **Substitute**:
   - Let \(u = 2x^2 + 3\)
   - Then \(du = 4x \, dx\)
   - Therefore, \(dx = \frac{1}{4x} \, du\)

2. **Rewrite Integral**:
   - Substitute \(u\) and \(dx\) into the original integral:
   \[
   \int x(2x^2 + 3)^4 dx = \int x u^4 \frac{1}{4x} \, du
   \]
   The \(x\) terms cancel out, giving:
   \[
   = \frac{1}{4} \int u^4 du
   \]
   
3. **Integrate**:
   - Integrate \(u^4\):
   \[
   \frac{1}{4} \int u^4 du = \frac{1}{4} \cdot \frac{u^5}{5} = \frac{1}{20} u^5 + C
   \]

4. **Resubstitute** \(u\):
   - Recall \(u = 2x^2 + 3\):
   \[
   \frac{1}{20} (2x^2 + 3)^5 + C
   \]

Therefore, the final answer is:

\[
\int x (2x^2 + 3)^4 dx = \frac{1}{20} (2x^2 + 3)^5 + C
\]

### Diagram/Graph Explanation:

- The diagram illustrates the use of substitution for integration. 
- The substitution \( u = 2x^2 + 3 \) is highlighted, showing how to transform the integral.
- Conversion steps involve isolating \( x \) in terms of \( u \), and subsequently replacing \( dx \) with \(\frac{1}{4x} du\).
- The integral is simplified by cancelling out \( x \) terms, integrating \( u \), and then substituting back to \( x \).

This method effectively handles more complex integrals by simplifying them through substitution.
Transcribed Image Text:## Integration by Substitution ### Problem 2: Evaluate the integral of \(x(2x^2 + 3)^4 dx\). ### Solution: 1. **Substitute**: - Let \(u = 2x^2 + 3\) - Then \(du = 4x \, dx\) - Therefore, \(dx = \frac{1}{4x} \, du\) 2. **Rewrite Integral**: - Substitute \(u\) and \(dx\) into the original integral: \[ \int x(2x^2 + 3)^4 dx = \int x u^4 \frac{1}{4x} \, du \] The \(x\) terms cancel out, giving: \[ = \frac{1}{4} \int u^4 du \] 3. **Integrate**: - Integrate \(u^4\): \[ \frac{1}{4} \int u^4 du = \frac{1}{4} \cdot \frac{u^5}{5} = \frac{1}{20} u^5 + C \] 4. **Resubstitute** \(u\): - Recall \(u = 2x^2 + 3\): \[ \frac{1}{20} (2x^2 + 3)^5 + C \] Therefore, the final answer is: \[ \int x (2x^2 + 3)^4 dx = \frac{1}{20} (2x^2 + 3)^5 + C \] ### Diagram/Graph Explanation: - The diagram illustrates the use of substitution for integration. - The substitution \( u = 2x^2 + 3 \) is highlighted, showing how to transform the integral. - Conversion steps involve isolating \( x \) in terms of \( u \), and subsequently replacing \( dx \) with \(\frac{1}{4x} du\). - The integral is simplified by cancelling out \( x \) terms, integrating \( u \), and then substituting back to \( x \). This method effectively handles more complex integrals by simplifying them through substitution.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning