### Semiconductor Characteristics: Table Overview #### Table Details The images provide two tables detailing semiconductor characteristics for both p-side and n-side regions of a diode. --- #### Table 1: Material Properties | **p-side** | | | **n-side** | | | | | | | |-------------|----|----|-------------|----|----|----|----|----| | \( N_A \) | \( D_n \) | \( L_n \) | \( N_D \) | \( D_p \) | \( L_p \) | \( V_0 \) | \( \varepsilon_{\text{max}} \)(V) | \( J_s \) | Area | \( J(V) \) | | \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | V | V/cm | A/cm\(^2\) | cm\(^2\) | A/cm\(^2\) | | \( 1 \times 10^{18} \) | | | \( 6 \times 10^{15} \) | | | | | | | \( 1 \times 10^{-7} \) | * **\( N_A \) and \( N_D \):** Doping concentrations for p-type and n-type respectively. * **\( D_n \), \( D_p \):** Diffusion coefficients for electrons and holes. * **\( L_n \), \( L_p \):** Diffusion lengths for electrons and holes. * **\( V_0 \):** Built-in voltage. * **\( \varepsilon_{\text{max}}(V) \):** Maximum electric field. * **\( J_s \):** Saturation current density. * **\( J(V) \):** Current density. --- #### Table 2: Electrical Properties | **p-side** | | **n-side** | | | | | | | |-------------|----|-------------|----|---|---|---|----|----| | \( \sigma_p \) | \( R_p \) | \( \ ## Educational Content: Abrupt Junction Diode Analysis ### Problem Statement **Given:** A long base, silicon p⁺n abrupt junction diode with the following parameters: - **n-side (ND):** 6E15 cm⁻³ - **p-side (NA):** 1E18 cm⁻³ - **Minority carrier lifetimes:** τₚ = τₙ = 10 ns = 1E-8 seconds - **Junction area (A):** 1E-7 cm² - **Distance from junction to applied V contacts:** - \( W_n = W_p = 25 \mu m = 2.5E-3 cm \) **Alert:** \( W = x_n + x_p \) is not the space charge width. Refer to the diagram. ### Diagram Description The diagram depicts a silicon p⁺n abrupt junction diode: - The p⁺ side has an acceptor concentration \( N_A \). - The n side has a donor concentration \( N_D \). - Regions \( W_p \) and \( W_n \) indicate distances related to carrier movement with \( x_p \) and \( x_n \) representing depletion region widths. ### Tasks #### a. Forward Bias Validation With a forward bias \( V = 0.6 \) volts, confirm low-level injection (LLI) applicability: - Show: \( \Delta p(x_n) = p_{n0} \left[ \exp\left(\frac{qV}{kT}\right) - 1 \right] \ll n_n \approx N_D \) #### b. Parameter Calculation Utilize given values to compute parameters for the diode with forward bias \( V = 0.6 \) volts: - **Minority carrier parameters:** - \( \sigma_n = q\mu_nN_D \) - \( \sigma_p = q\mu_pN_A \) - **Electric field at metallurgical junction:** \( \mathcal{E}_{max} \) - **Carrier concentration ratio:** \( R = R_p + R_n = W_p/(A \cdot \sigma_p) + W_n/(A \cdot \sigma_n) \) #### c. Expression for \( J_p(x) \) Determine \( J_p(x) \) on the n-side: - Evaluate at contact:
### Semiconductor Characteristics: Table Overview #### Table Details The images provide two tables detailing semiconductor characteristics for both p-side and n-side regions of a diode. --- #### Table 1: Material Properties | **p-side** | | | **n-side** | | | | | | | |-------------|----|----|-------------|----|----|----|----|----| | \( N_A \) | \( D_n \) | \( L_n \) | \( N_D \) | \( D_p \) | \( L_p \) | \( V_0 \) | \( \varepsilon_{\text{max}} \)(V) | \( J_s \) | Area | \( J(V) \) | | \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | V | V/cm | A/cm\(^2\) | cm\(^2\) | A/cm\(^2\) | | \( 1 \times 10^{18} \) | | | \( 6 \times 10^{15} \) | | | | | | | \( 1 \times 10^{-7} \) | * **\( N_A \) and \( N_D \):** Doping concentrations for p-type and n-type respectively. * **\( D_n \), \( D_p \):** Diffusion coefficients for electrons and holes. * **\( L_n \), \( L_p \):** Diffusion lengths for electrons and holes. * **\( V_0 \):** Built-in voltage. * **\( \varepsilon_{\text{max}}(V) \):** Maximum electric field. * **\( J_s \):** Saturation current density. * **\( J(V) \):** Current density. --- #### Table 2: Electrical Properties | **p-side** | | **n-side** | | | | | | | |-------------|----|-------------|----|---|---|---|----|----| | \( \sigma_p \) | \( R_p \) | \( \ ## Educational Content: Abrupt Junction Diode Analysis ### Problem Statement **Given:** A long base, silicon p⁺n abrupt junction diode with the following parameters: - **n-side (ND):** 6E15 cm⁻³ - **p-side (NA):** 1E18 cm⁻³ - **Minority carrier lifetimes:** τₚ = τₙ = 10 ns = 1E-8 seconds - **Junction area (A):** 1E-7 cm² - **Distance from junction to applied V contacts:** - \( W_n = W_p = 25 \mu m = 2.5E-3 cm \) **Alert:** \( W = x_n + x_p \) is not the space charge width. Refer to the diagram. ### Diagram Description The diagram depicts a silicon p⁺n abrupt junction diode: - The p⁺ side has an acceptor concentration \( N_A \). - The n side has a donor concentration \( N_D \). - Regions \( W_p \) and \( W_n \) indicate distances related to carrier movement with \( x_p \) and \( x_n \) representing depletion region widths. ### Tasks #### a. Forward Bias Validation With a forward bias \( V = 0.6 \) volts, confirm low-level injection (LLI) applicability: - Show: \( \Delta p(x_n) = p_{n0} \left[ \exp\left(\frac{qV}{kT}\right) - 1 \right] \ll n_n \approx N_D \) #### b. Parameter Calculation Utilize given values to compute parameters for the diode with forward bias \( V = 0.6 \) volts: - **Minority carrier parameters:** - \( \sigma_n = q\mu_nN_D \) - \( \sigma_p = q\mu_pN_A \) - **Electric field at metallurgical junction:** \( \mathcal{E}_{max} \) - **Carrier concentration ratio:** \( R = R_p + R_n = W_p/(A \cdot \sigma_p) + W_n/(A \cdot \sigma_n) \) #### c. Expression for \( J_p(x) \) Determine \( J_p(x) \) on the n-side: - Evaluate at contact:
Related questions
Question
Any help would be appreciated
![### Semiconductor Characteristics: Table Overview
#### Table Details
The images provide two tables detailing semiconductor characteristics for both p-side and n-side regions of a diode.
---
#### Table 1: Material Properties
| **p-side** | | | **n-side** | | | | | | |
|-------------|----|----|-------------|----|----|----|----|----|
| \( N_A \) | \( D_n \) | \( L_n \) | \( N_D \) | \( D_p \) | \( L_p \) | \( V_0 \) | \( \varepsilon_{\text{max}} \)(V) | \( J_s \) | Area | \( J(V) \) |
| \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | V | V/cm | A/cm\(^2\) | cm\(^2\) | A/cm\(^2\) |
| \( 1 \times 10^{18} \) | | | \( 6 \times 10^{15} \) | | | | | | | \( 1 \times 10^{-7} \) |
* **\( N_A \) and \( N_D \):** Doping concentrations for p-type and n-type respectively.
* **\( D_n \), \( D_p \):** Diffusion coefficients for electrons and holes.
* **\( L_n \), \( L_p \):** Diffusion lengths for electrons and holes.
* **\( V_0 \):** Built-in voltage.
* **\( \varepsilon_{\text{max}}(V) \):** Maximum electric field.
* **\( J_s \):** Saturation current density.
* **\( J(V) \):** Current density.
---
#### Table 2: Electrical Properties
| **p-side** | | **n-side** | | | | | | |
|-------------|----|-------------|----|---|---|---|----|----|
| \( \sigma_p \) | \( R_p \) | \( \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa39e84ae-db2b-4276-ac2e-3f71b7ed9768%2Ffe95d939-3ad2-4f08-aa88-ee5f9be611cd%2F9zkrhlc_processed.png&w=3840&q=75)
Transcribed Image Text:### Semiconductor Characteristics: Table Overview
#### Table Details
The images provide two tables detailing semiconductor characteristics for both p-side and n-side regions of a diode.
---
#### Table 1: Material Properties
| **p-side** | | | **n-side** | | | | | | |
|-------------|----|----|-------------|----|----|----|----|----|
| \( N_A \) | \( D_n \) | \( L_n \) | \( N_D \) | \( D_p \) | \( L_p \) | \( V_0 \) | \( \varepsilon_{\text{max}} \)(V) | \( J_s \) | Area | \( J(V) \) |
| \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | \( \text{cm}^{-3} \) | \( \text{cm}^2/\text{s} \) | cm | V | V/cm | A/cm\(^2\) | cm\(^2\) | A/cm\(^2\) |
| \( 1 \times 10^{18} \) | | | \( 6 \times 10^{15} \) | | | | | | | \( 1 \times 10^{-7} \) |
* **\( N_A \) and \( N_D \):** Doping concentrations for p-type and n-type respectively.
* **\( D_n \), \( D_p \):** Diffusion coefficients for electrons and holes.
* **\( L_n \), \( L_p \):** Diffusion lengths for electrons and holes.
* **\( V_0 \):** Built-in voltage.
* **\( \varepsilon_{\text{max}}(V) \):** Maximum electric field.
* **\( J_s \):** Saturation current density.
* **\( J(V) \):** Current density.
---
#### Table 2: Electrical Properties
| **p-side** | | **n-side** | | | | | | |
|-------------|----|-------------|----|---|---|---|----|----|
| \( \sigma_p \) | \( R_p \) | \( \
![## Educational Content: Abrupt Junction Diode Analysis
### Problem Statement
**Given:**
A long base, silicon p⁺n abrupt junction diode with the following parameters:
- **n-side (ND):** 6E15 cm⁻³
- **p-side (NA):** 1E18 cm⁻³
- **Minority carrier lifetimes:** τₚ = τₙ = 10 ns = 1E-8 seconds
- **Junction area (A):** 1E-7 cm²
- **Distance from junction to applied V contacts:**
- \( W_n = W_p = 25 \mu m = 2.5E-3 cm \)
**Alert:** \( W = x_n + x_p \) is not the space charge width. Refer to the diagram.
### Diagram Description
The diagram depicts a silicon p⁺n abrupt junction diode:
- The p⁺ side has an acceptor concentration \( N_A \).
- The n side has a donor concentration \( N_D \).
- Regions \( W_p \) and \( W_n \) indicate distances related to carrier movement with \( x_p \) and \( x_n \) representing depletion region widths.
### Tasks
#### a. Forward Bias Validation
With a forward bias \( V = 0.6 \) volts, confirm low-level injection (LLI) applicability:
- Show: \( \Delta p(x_n) = p_{n0} \left[ \exp\left(\frac{qV}{kT}\right) - 1 \right] \ll n_n \approx N_D \)
#### b. Parameter Calculation
Utilize given values to compute parameters for the diode with forward bias \( V = 0.6 \) volts:
- **Minority carrier parameters:**
- \( \sigma_n = q\mu_nN_D \)
- \( \sigma_p = q\mu_pN_A \)
- **Electric field at metallurgical junction:** \( \mathcal{E}_{max} \)
- **Carrier concentration ratio:** \( R = R_p + R_n = W_p/(A \cdot \sigma_p) + W_n/(A \cdot \sigma_n) \)
#### c. Expression for \( J_p(x) \)
Determine \( J_p(x) \) on the n-side:
- Evaluate at contact:](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa39e84ae-db2b-4276-ac2e-3f71b7ed9768%2Ffe95d939-3ad2-4f08-aa88-ee5f9be611cd%2Fqcf9zwk_processed.png&w=3840&q=75)
Transcribed Image Text:## Educational Content: Abrupt Junction Diode Analysis
### Problem Statement
**Given:**
A long base, silicon p⁺n abrupt junction diode with the following parameters:
- **n-side (ND):** 6E15 cm⁻³
- **p-side (NA):** 1E18 cm⁻³
- **Minority carrier lifetimes:** τₚ = τₙ = 10 ns = 1E-8 seconds
- **Junction area (A):** 1E-7 cm²
- **Distance from junction to applied V contacts:**
- \( W_n = W_p = 25 \mu m = 2.5E-3 cm \)
**Alert:** \( W = x_n + x_p \) is not the space charge width. Refer to the diagram.
### Diagram Description
The diagram depicts a silicon p⁺n abrupt junction diode:
- The p⁺ side has an acceptor concentration \( N_A \).
- The n side has a donor concentration \( N_D \).
- Regions \( W_p \) and \( W_n \) indicate distances related to carrier movement with \( x_p \) and \( x_n \) representing depletion region widths.
### Tasks
#### a. Forward Bias Validation
With a forward bias \( V = 0.6 \) volts, confirm low-level injection (LLI) applicability:
- Show: \( \Delta p(x_n) = p_{n0} \left[ \exp\left(\frac{qV}{kT}\right) - 1 \right] \ll n_n \approx N_D \)
#### b. Parameter Calculation
Utilize given values to compute parameters for the diode with forward bias \( V = 0.6 \) volts:
- **Minority carrier parameters:**
- \( \sigma_n = q\mu_nN_D \)
- \( \sigma_p = q\mu_pN_A \)
- **Electric field at metallurgical junction:** \( \mathcal{E}_{max} \)
- **Carrier concentration ratio:** \( R = R_p + R_n = W_p/(A \cdot \sigma_p) + W_n/(A \cdot \sigma_n) \)
#### c. Expression for \( J_p(x) \)
Determine \( J_p(x) \) on the n-side:
- Evaluate at contact:
AI-Generated Solution
Unlock instant AI solutions
Tap the button
to generate a solution