2. For which of the following series does the ratio test ensure divergence? Select all that apply. n=1 n=1 8 n=1 n=1 M& n=1 31 + n! 2n + 3 n! 2n! NI (n!)² (2n)! + 13 + 2.5 1.5 en 3.5 3.5.7 1.3 1.3.5 1.3 1.3.5 + 3.5 3.5.7 (n²)! Σ (2n)! n=1 + (n+1) 2n (n + 1)! 1.5 + 2 2.5 2.5.8 1.5.9 + + 1.5.9 2.5.8 + + + + + + + + 1) 2.5.8.(3n- 1.5.9 (4n-3) ... - 3.5.7 (2n+1) 1.3.5... (2n - 1) 1.3.5 (2n-1) 3.5.7 (2n +1) 1.5.9...(4n 3) 2.5.8(3n 1) + + +

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. For which of the following series does the ratio test ensure divergence? Select all that apply.
n=1
n=1
8
n=1
2n!
n=1
0 2 2.5
+
1
1.5
n=1
3
113
+
n=
+
IME
n!
2n + 3
(n!)²
(2n)!
+
(n+1) ²n
(n + 1)!
+
2
2.5.8
1.5.9
3.5 3.5.7
1.3
1.3.5
+
1.3
1.3.5
+
3.5 3.5.7
(n²)!
(2n)!
1.5 1.5.9
+
2.5 2.5.8
+ +
+
+
+ +
+
+
2.5.8... (3n 1)
+
1.5.9 (4n - 3)
3.5.7
1.3.5..
1.3.5
3.5.7
(2n + 1)
(2n-1)
(2n-1)
(2n + 1)
1.5.9...(4n 3)
2.5.8(3n
1)
+
+
+
Transcribed Image Text:2. For which of the following series does the ratio test ensure divergence? Select all that apply. n=1 n=1 8 n=1 2n! n=1 0 2 2.5 + 1 1.5 n=1 3 113 + n= + IME n! 2n + 3 (n!)² (2n)! + (n+1) ²n (n + 1)! + 2 2.5.8 1.5.9 3.5 3.5.7 1.3 1.3.5 + 1.3 1.3.5 + 3.5 3.5.7 (n²)! (2n)! 1.5 1.5.9 + 2.5 2.5.8 + + + + + + + + 2.5.8... (3n 1) + 1.5.9 (4n - 3) 3.5.7 1.3.5.. 1.3.5 3.5.7 (2n + 1) (2n-1) (2n-1) (2n + 1) 1.5.9...(4n 3) 2.5.8(3n 1) + + +
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,