2. For this entire page, let A = {x E Z: 6< x< 10 and 2|x} a. List the elements of A. b. List the objects in the power set of A, 24. c. Please label each of the following statements as either true or false. (You do not need to prove your assertions.) i. 10 E A 1i. 14 E A iii. {6} € A iv. Ø E A v. 8 E 24 vi. {8} € 24 vii. Ø E 24 ix. 10 CA x. {10} C A xi. A C A xii. Ø C A xiі. 10 с 24 xiv. (10} C 24 xv. {{8}, {10}} C 24 xvi. A C 24 viii. A E 24

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please help with question 2 in images. Thank you.

### Problem Statement

For this entire page, let \( A = \{ x \in \mathbb{Z} : 6 \leq x \leq 10 \text{ and } 2|x \} \).

#### a. List the elements of \( A \).

Since \( A \) is the set of integers \( x \) such that \( 6 \leq x \leq 10 \) and \( x \) is even, the elements of \( A \) are:

\[ A = \{ 6, 8, 10 \} \]

#### b. List the objects in the power set of \( A \), \( 2^A \).

The power set \( 2^A \) of the set \( A = \{ 6, 8, 10 \} \) includes all possible subsets of \( A \):

\[ 2^A = \{ \emptyset, \{6\}, \{8\}, \{10\}, \{6, 8\}, \{6, 10\}, \{8, 10\}, \{6, 8, 10\} \} \]

#### c. Please label each of the following statements as either true or false. (You do not need to prove your assertions.)

**Statements:**

i. \( 10 \in A \)  __________

ii. \( 14 \in A \)  __________

iii. \( \{6\} \in A \)  __________

iv. \( \emptyset \in A \)  __________

v. \( 8 \in 2^A \)  __________

vi. \( \{8\} \in 2^A \)  __________

vii. \( \emptyset \in 2^A \)  __________

viii. \( A \in 2^A \)  __________

ix. \( 10 \subseteq A \)  __________

x. \( \{10\} \subseteq A \)  __________

xi. \( A \subseteq A \)  __________

xii. \( \emptyset \subseteq A \)  __________

xiii. \( 10 \subseteq 2^A \)  __________

xiv. \( \{10\} \subseteq 2^A \
Transcribed Image Text:### Problem Statement For this entire page, let \( A = \{ x \in \mathbb{Z} : 6 \leq x \leq 10 \text{ and } 2|x \} \). #### a. List the elements of \( A \). Since \( A \) is the set of integers \( x \) such that \( 6 \leq x \leq 10 \) and \( x \) is even, the elements of \( A \) are: \[ A = \{ 6, 8, 10 \} \] #### b. List the objects in the power set of \( A \), \( 2^A \). The power set \( 2^A \) of the set \( A = \{ 6, 8, 10 \} \) includes all possible subsets of \( A \): \[ 2^A = \{ \emptyset, \{6\}, \{8\}, \{10\}, \{6, 8\}, \{6, 10\}, \{8, 10\}, \{6, 8, 10\} \} \] #### c. Please label each of the following statements as either true or false. (You do not need to prove your assertions.) **Statements:** i. \( 10 \in A \) __________ ii. \( 14 \in A \) __________ iii. \( \{6\} \in A \) __________ iv. \( \emptyset \in A \) __________ v. \( 8 \in 2^A \) __________ vi. \( \{8\} \in 2^A \) __________ vii. \( \emptyset \in 2^A \) __________ viii. \( A \in 2^A \) __________ ix. \( 10 \subseteq A \) __________ x. \( \{10\} \subseteq A \) __________ xi. \( A \subseteq A \) __________ xii. \( \emptyset \subseteq A \) __________ xiii. \( 10 \subseteq 2^A \) __________ xiv. \( \{10\} \subseteq 2^A \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,