2. For each of the following, X represents Rx R. Prove that each of the following distance function is a metric on X. Let x = (x1, x₂), y = (91, 92) and z = (21, 22) (i).d(x, y) = √(x₁ - y₁)² + (x2 - y₂)² (Hint: Use the Minkowski's Inequality: Σ(an + bn)² ≤ √Σan² + √b² where an, bn are real numbers. (ii). d(x, y) = x₁y₁| + x2 - y₂| - (iii). d(x, y) = max {|x₁ - y₁|, |x2 - y2|}. 3. Extend each of the above three distance functions to define on X = R" and show that in each case the distance function is a metric.
2. For each of the following, X represents Rx R. Prove that each of the following distance function is a metric on X. Let x = (x1, x₂), y = (91, 92) and z = (21, 22) (i).d(x, y) = √(x₁ - y₁)² + (x2 - y₂)² (Hint: Use the Minkowski's Inequality: Σ(an + bn)² ≤ √Σan² + √b² where an, bn are real numbers. (ii). d(x, y) = x₁y₁| + x2 - y₂| - (iii). d(x, y) = max {|x₁ - y₁|, |x2 - y2|}. 3. Extend each of the above three distance functions to define on X = R" and show that in each case the distance function is a metric.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
Step 1
Step by step
Solved in 5 steps with 5 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,