2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of each product and disappearance of each reactant: a. Os(g) + H2O(g) → 2 O2(g) + H2(g) b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H:O(g) c. 2 CAH2(g) + 5 O:(g) → 4 CO2(g) + 2 H:O(g) d. CaH,NH2(g) → CaHe(g) + NH3(g)

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

2. C and D

LEARNING ACTIVITY 2
1. Consider the following hypothetical aqueous reaction:
A(aq) – B(aq)
A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected:
Time (min)
Moles of A
20
0.140
40
0.100
60
0.070
80
0.050
0.200
a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules
of B at time zero and that A cleanly converts to B with no intermediates.
b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s.
c. Calculate the average rate of disappearance of A from the start of reaction to t = 80 min in units of
M/s.
d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s?
Assume that the volume of the solution is constant.
2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of
each product and disappearance of each reactant:
a. Os(g) + H2O(g) → 2 O2(g) + Hz(g)
b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H;O(g)
c. 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g)
d. CaH;NH2(g) –→ CaHe(g) + NH3(g)
3. Consider the reaction Os(g) + H2O(g) → 2 Oz(g) + H2(g). If the concentration of Os is decreasing at the
rate of 0.025 M/s, what are the rates of change in the concentrations of Oz and H2?
Transcribed Image Text:LEARNING ACTIVITY 2 1. Consider the following hypothetical aqueous reaction: A(aq) – B(aq) A flask is charged with 0.200 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) Moles of A 20 0.140 40 0.100 60 0.070 80 0.050 0.200 a. Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates. b. Calculate the average rate of disappearance of A for each 20-min interval in units of M/s. c. Calculate the average rate of disappearance of A from the start of reaction to t = 80 min in units of M/s. d. Between t = 0 min and t = 60 min, what is the average rate of appearance of B in units of M/s? Assume that the volume of the solution is constant. 2. For each of the following gas-phase reactions, write the rate expression in terms of the appearance of each product and disappearance of each reactant: a. Os(g) + H2O(g) → 2 O2(g) + Hz(g) b. 4 NH3(g) + 5 Oz(g) → 4 NO(g) + 6 H;O(g) c. 2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g) d. CaH;NH2(g) –→ CaHe(g) + NH3(g) 3. Consider the reaction Os(g) + H2O(g) → 2 Oz(g) + H2(g). If the concentration of Os is decreasing at the rate of 0.025 M/s, what are the rates of change in the concentrations of Oz and H2?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Matter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY