2. For any r.V. S X1,..., Χη, set (a) Show that η X x - Σxi, and 52 - Σ - x). = Σ(x η i=1 i=1 n n n52 = Σ(x − x) = Σx - n(X)2. - = i=1 i=1 (b) If the r.v.’s have the common finite expectation μ, then n n Σ(X; - μ)2 = Σ(x - X)2 + n(X - μ)2 = nā2 + n(X - μ). – i=1 i=1

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
2. For any r.v.'s X₁,..., Xn, set
(a) Show that
n
n
i=1
Xi, and 5²
n
n
(X − X)2.
n
n
n5² = Σ(X₁ − X)² = ΣX² − n(X)².
i=1
i=1
(b) If the r.v.'s have the common finite expectation µ, then
n
n
Σ(Xi − µ)² = Σ(Xi − Ñ)² + n(Ñ − µ)² = n5² + n(Ñ − µ)².
i=1
i=1
Transcribed Image Text:2. For any r.v.'s X₁,..., Xn, set (a) Show that n n i=1 Xi, and 5² n n (X − X)2. n n n5² = Σ(X₁ − X)² = ΣX² − n(X)². i=1 i=1 (b) If the r.v.'s have the common finite expectation µ, then n n Σ(Xi − µ)² = Σ(Xi − Ñ)² + n(Ñ − µ)² = n5² + n(Ñ − µ)². i=1 i=1
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer