2. Find the values of p for which the integral converges and evaluate the integral for th dx a) dx b) c) x* In(: 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Number 2 (b,c)

d)
e)
(6x' +5)"*
dx
2.
0 4+9x²
f)
0.
xIn x
o Varctan x
dx
1+x²
3x
g)
h)
sec (3x)dx
j)
2.
Find the values of p for which the integral converges and evaluate the integral for those values of p.
dx
-dx
0 x
(x* In(x)dx
a)
b)
c)
e
0.
Check for convergence or divergence:
2x +3x +5
*+3'+2 dx
x² +5*
∞ X+3*
1
dx
x sin x
00
T/2
a)
-dp-
b)
c)
Ji 7x +9x' +2x
0.
Tsin x
dx
3 +5 +2"
d)
* xarctan x
e)
f)
0 5* +7* +2*
(1 + x*}
3x +2* +5 dr
4x +3x+4
3x² +5x+4
J. 2x' +7x +1
h)
i)
=Ddx
g)
x'2"
7x° +2x +4
4.
Find the arc - length of the following:
1
for 1<x<2
a)
y =
8x2
e'+
b)
y= In
for 1<x<2
e* –1
c)
x= arccos(1- y)+ V2y- y²; for -< y<1
x'
+ x*
1
; for 0sxS2
+x +
3.
Transcribed Image Text:d) e) (6x' +5)"* dx 2. 0 4+9x² f) 0. xIn x o Varctan x dx 1+x² 3x g) h) sec (3x)dx j) 2. Find the values of p for which the integral converges and evaluate the integral for those values of p. dx -dx 0 x (x* In(x)dx a) b) c) e 0. Check for convergence or divergence: 2x +3x +5 *+3'+2 dx x² +5* ∞ X+3* 1 dx x sin x 00 T/2 a) -dp- b) c) Ji 7x +9x' +2x 0. Tsin x dx 3 +5 +2" d) * xarctan x e) f) 0 5* +7* +2* (1 + x*} 3x +2* +5 dr 4x +3x+4 3x² +5x+4 J. 2x' +7x +1 h) i) =Ddx g) x'2" 7x° +2x +4 4. Find the arc - length of the following: 1 for 1<x<2 a) y = 8x2 e'+ b) y= In for 1<x<2 e* –1 c) x= arccos(1- y)+ V2y- y²; for -< y<1 x' + x* 1 ; for 0sxS2 +x + 3.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,