2. Find the rank of the following matrices. /1 1 0 GID 0 1 1 (b) 2 1 1 1 1 0 (a) 1) (4) (272) (f) 1234 -4 2 4 1 62 -8 1 -3 1, 0 1 1) 3 0 51 (e) (g) 12 3 1 1 0 1 2 02-30 1 (Ⓒ) (₁² Gi 14 4 2 12 10 00 1 0 1 2202 1101 1 1 0 1 02

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Matrix Rank Problems and Operations

#### Problem 2: Rank of Matrices
Determine the rank of each of the following matrices:

(a) 
\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]

(b) 
\[
\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]

(c) 
\[
\begin{bmatrix}
1 & 0 & 2 \\
1 & 1 & 4
\end{bmatrix}
\]

(d) 
\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2
\end{bmatrix}
\]

(e) 
\[
\begin{bmatrix}
1 & 2 & 3 & 1 & 1 \\
1 & 4 & 0 & 1 & 2 \\
0 & 2 & -3 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(f) 
\[
\begin{bmatrix}
1 & 2 & 0 & 1 & 1 \\
2 & 4 & 1 & 3 & 0 \\
3 & 6 & 2 & 5 & 1 \\
-4 & -8 & 1 & -3 & 1
\end{bmatrix}
\]

(g) 
\[
\begin{bmatrix}
1 & 1 & 0 & 1 \\
2 & 2 & 0 & 2 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{bmatrix}
\]

#### Problem 3: Zero Matrix and Rank
Show that for any \(m \times n\) matrix \(A\), \(\text{rank}(A) = 0\) if and only if \(A\) is the zero matrix.

#### Problem 4: Row and Column Operations
Use elementary row and column operations to transform each of the following matrices into a matrix \(D\) satisfying the conditions of Theorem
Transcribed Image Text:### Matrix Rank Problems and Operations #### Problem 2: Rank of Matrices Determine the rank of each of the following matrices: (a) \[ \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \] (b) \[ \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \] (c) \[ \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix} \] (d) \[ \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \end{bmatrix} \] (e) \[ \begin{bmatrix} 1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 0 & 1 & 2 \\ 0 & 2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \] (f) \[ \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 2 & 4 & 1 & 3 & 0 \\ 3 & 6 & 2 & 5 & 1 \\ -4 & -8 & 1 & -3 & 1 \end{bmatrix} \] (g) \[ \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \] #### Problem 3: Zero Matrix and Rank Show that for any \(m \times n\) matrix \(A\), \(\text{rank}(A) = 0\) if and only if \(A\) is the zero matrix. #### Problem 4: Row and Column Operations Use elementary row and column operations to transform each of the following matrices into a matrix \(D\) satisfying the conditions of Theorem
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,