2. Find the LU factorization of the following matrix. 1 1 A = | 1 2 3 1 3 6 /1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
---

### LU Factorization Problem

#### Problem Statement:
Find the LU factorization of the following matrix.

\[ A = \begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{pmatrix} \]

---

### Explanation:

LU factorization decomposes a matrix into the product of a lower triangular matrix \( L \) and an upper triangular matrix \( U \).

For the matrix \( A \) given above, we seek matrices \( L \) and \( U \) such that:
\[ A = LU \]

Where:
- \( L \) is a lower triangular matrix.
- \( U \) is an upper triangular matrix.

Begin with \( A \):
\[ A = \begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{pmatrix} \]

1. **Upper Triangular Matrix \( U \)**: It will have the form:
\[ U = \begin{pmatrix}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{pmatrix} \]

2. **Lower Triangular Matrix \( L \)**: It will have the form:
\[ L = \begin{pmatrix}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{pmatrix} \]

Next steps involve the elimination process to find the exact values of \( l_{ij} \) and \( u_{ij} \).

1. **Step 1**: Keep the first row of \( A \) as the first row of \( U \):
\[ U = \begin{pmatrix}
1 & 1 & 1 \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{pmatrix} \]

2. **Step 2**: Eliminate the first column elements below \( u_{11} \):
\[ L = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & l_{32} &
Transcribed Image Text:--- ### LU Factorization Problem #### Problem Statement: Find the LU factorization of the following matrix. \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix} \] --- ### Explanation: LU factorization decomposes a matrix into the product of a lower triangular matrix \( L \) and an upper triangular matrix \( U \). For the matrix \( A \) given above, we seek matrices \( L \) and \( U \) such that: \[ A = LU \] Where: - \( L \) is a lower triangular matrix. - \( U \) is an upper triangular matrix. Begin with \( A \): \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix} \] 1. **Upper Triangular Matrix \( U \)**: It will have the form: \[ U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \] 2. **Lower Triangular Matrix \( L \)**: It will have the form: \[ L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \] Next steps involve the elimination process to find the exact values of \( l_{ij} \) and \( u_{ij} \). 1. **Step 1**: Keep the first row of \( A \) as the first row of \( U \): \[ U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \] 2. **Step 2**: Eliminate the first column elements below \( u_{11} \): \[ L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & l_{32} &
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Determinant
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,