2. Factor by grouping. yw-28y-4w+7y?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Factor by grouping
![**Problem 2: Factor by Grouping**
Expression to factor:
\[ yw - 28y - 4w + 7y^2 \]
**Instructions for an Educational Website:**
To factor the expression by grouping, follow these steps:
1. **Group the terms:**
- Group the first two terms and the last two terms: \( (yw - 28y) \) and \( (-4w + 7y^2) \).
2. **Factor out the greatest common factor from each group:**
- For the first group \( (yw - 28y) \), factor out \( y \):
\[ y(w - 28) \]
- For the second group \( (-4w + 7y^2) \), factor out \( -1 \) (pay attention to signs):
\[ -1(4w - 7y^2) \]
3. **Rewrite the expression:**
- After factoring, the expression becomes:
\[ y(w - 28) - 1(4w - 7y^2) \]
4. **Factor by grouping:**
- The expression can further be analyzed, although additional steps may reveal alternative factors.
This method simplifies expressions by identifying common factors and grouping strategically.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa78d0b28-f8d9-4005-972e-85b11c340109%2Fae2a7bf9-45ea-48b3-84f2-7d2f94d057c3%2F0feqoc3_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 2: Factor by Grouping**
Expression to factor:
\[ yw - 28y - 4w + 7y^2 \]
**Instructions for an Educational Website:**
To factor the expression by grouping, follow these steps:
1. **Group the terms:**
- Group the first two terms and the last two terms: \( (yw - 28y) \) and \( (-4w + 7y^2) \).
2. **Factor out the greatest common factor from each group:**
- For the first group \( (yw - 28y) \), factor out \( y \):
\[ y(w - 28) \]
- For the second group \( (-4w + 7y^2) \), factor out \( -1 \) (pay attention to signs):
\[ -1(4w - 7y^2) \]
3. **Rewrite the expression:**
- After factoring, the expression becomes:
\[ y(w - 28) - 1(4w - 7y^2) \]
4. **Factor by grouping:**
- The expression can further be analyzed, although additional steps may reveal alternative factors.
This method simplifies expressions by identifying common factors and grouping strategically.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)