2. Evaluate the integral (3x²+2x³)dx using the limiting process from the definition 1 of the definite integral: f(x) dx = lim Σf(xVx. Compare the result with the n→∞i=1 Hint: i i=1 b result when using FTC part 2. n(n+1) 2 2²² = Σ; i=1 n(n+1)(2n+1) 6 ²i³ = ( n(n+1) 2 Σ i=1 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Solve this problem with explanation. Thank you
2. Evaluate the integral (3x²+2x³)dx using the limiting process from the definition
1
of the definite integral: ff(x) dx = lim Σf(x)Vx. Compare the result with the
n→∞⁰ i=1
b
a
result when using FTC part 2.
n
n(n+1)
Hint: [i =
Σ
2
i=1
Σ;”
i=1
=
n(n+1)(2n+1)
6
2
{ ³²³ = (n(n+D)²
2
i=1
Transcribed Image Text:2. Evaluate the integral (3x²+2x³)dx using the limiting process from the definition 1 of the definite integral: ff(x) dx = lim Σf(x)Vx. Compare the result with the n→∞⁰ i=1 b a result when using FTC part 2. n n(n+1) Hint: [i = Σ 2 i=1 Σ;” i=1 = n(n+1)(2n+1) 6 2 { ³²³ = (n(n+D)² 2 i=1
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,