2. Evaluate the improper integrals or show that they diverge. Make careful use of limit notation. (a) 10 2 2 √x-2 (b) (7 2x dz + 2)² ze-2 dr dz

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

please show all work 

### Calculus Problems

#### Limits

1. Evaluate the following limits:

   (a) \(\lim_{x \to \infty} \frac{1}{x}\)

   (b) \(\lim_{x \to \infty} \frac{x^5}{e^x}\)

#### Improper Integrals

2. Evaluate the improper integrals or show that they diverge. Make careful use of limit notation.

   (a) \(\int_{2}^{10} \frac{2}{\sqrt{x-2}} \, dx\)

   (b) \(\int_{-\infty}^{0} \frac{2x}{(x^2 + 2)^2} \, dx\)

   (c) \(\int_{0}^{\infty} x e^{-2x} \, dx\)

#### Convergence Testing with the Comparison Test

3. Use the Comparison Test to determine whether or not the integral converges.

   (a) \(\int_{3}^{\infty} \frac{dx}{\sqrt{x-1}}\)

   (b) \(\int_{0}^{5} \frac{dx}{x^{1/3} + x^3}\)

   (c) \(\int_{1}^{\infty} \frac{1}{\sqrt{x^2 + 2}} \, dx\)

#### Additional Calculus Problems

4. Find the arc length of \(y = 2x\sqrt{x}\), from \(x = 0\) to \(x = 1\).

5. Find the centroid of the region enclosed by the parabola \(y = 1 - x^2\) and by the x-axis.
Transcribed Image Text:### Calculus Problems #### Limits 1. Evaluate the following limits: (a) \(\lim_{x \to \infty} \frac{1}{x}\) (b) \(\lim_{x \to \infty} \frac{x^5}{e^x}\) #### Improper Integrals 2. Evaluate the improper integrals or show that they diverge. Make careful use of limit notation. (a) \(\int_{2}^{10} \frac{2}{\sqrt{x-2}} \, dx\) (b) \(\int_{-\infty}^{0} \frac{2x}{(x^2 + 2)^2} \, dx\) (c) \(\int_{0}^{\infty} x e^{-2x} \, dx\) #### Convergence Testing with the Comparison Test 3. Use the Comparison Test to determine whether or not the integral converges. (a) \(\int_{3}^{\infty} \frac{dx}{\sqrt{x-1}}\) (b) \(\int_{0}^{5} \frac{dx}{x^{1/3} + x^3}\) (c) \(\int_{1}^{\infty} \frac{1}{\sqrt{x^2 + 2}} \, dx\) #### Additional Calculus Problems 4. Find the arc length of \(y = 2x\sqrt{x}\), from \(x = 0\) to \(x = 1\). 5. Find the centroid of the region enclosed by the parabola \(y = 1 - x^2\) and by the x-axis.
Expert Solution
Step 1

Please see the below picture for detailed solution. 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning