2. Evaluate the following limits using an appropriate function and its upper or lower sums. a) lim,0 (sin + sin 2 + ...+ sin ). Hint: Use the function f(x) = sin(rx), and an appropriate partition of the interval [0, 1], then imitate the proof in the notes/video. 6 (en + en + ...+e° e). Hint: Choose an appropriate function, an appropri- b) lim,- ate partition, and then use the limit of an upper upper sum as in a).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

16.2. Thanks both A and B. 

2. Evaluate the following limits using an appropriate function and its upper or lower sums.
a) limn+0; (sin + sin 2 + ...+ sin ). Hint: Use the function f(x) = sin(rx), and
an appropriate partition of the interval [0, 1], then imitate the proof in the notes/video.
b) lim,00 (en + en +...+ en). Hint: Choose an appropriate function, an appropri-
ate partition, and then use the limit of an upper upper sum as in a).
Transcribed Image Text:2. Evaluate the following limits using an appropriate function and its upper or lower sums. a) limn+0; (sin + sin 2 + ...+ sin ). Hint: Use the function f(x) = sin(rx), and an appropriate partition of the interval [0, 1], then imitate the proof in the notes/video. b) lim,00 (en + en +...+ en). Hint: Choose an appropriate function, an appropri- ate partition, and then use the limit of an upper upper sum as in a).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,