Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
can someone help me with this?

Transcribed Image Text:### Evaluating Expressions with Exponents
The worksheet contains several mathematical expressions that involve evaluating exponents. Below is the transcription and explanation of each expression along with the steps needed to solve them.
#### Expression 1: \((-2)^3\)
1. **Expression**: \((-2)^3\)
2. **Calculation**:
- You multiply -2 by itself three times: \(-2 \times -2 \times -2\).
- Result: \(-8\).
#### Expression 2: \((-5)^2\)
1. **Expression**: \((-5)^2\)
2. **Calculation**:
- Multiplying -5 by itself: \(-5 \times -5\).
- Result: \(25\).
#### Expression 3: \(\left(\frac{1}{8}\right)^{-2}\)
1. **Expression**: \(\left(\frac{1}{8}\right)^{-2}\)
2. **Calculation**:
- Flip the fraction to undo the negative exponent: \(\left(\frac{8}{1}\right)^2\).
- Multiply 8 by itself: \(8 \times 8\).
- Result: \(64\).
#### Expression 4: \(2^{-3}\)
1. **Expression**: \(2^{-3}\)
2. **Steps**:
- Start with \( \left(\frac{2}{1}\right)^{-3} \).
- Flip the fraction: \( \left(\frac{1}{2}\right)^3 \).
- Multiply \(\frac{1}{2}\) by itself three times: \(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\).
- Result: \(\frac{1}{8}\).
#### Expression 5: \(5^{-2}\)
1. **Expression**: \(5^{-2}\)
2. **Steps**:
- Convert to fraction: \(\left(\frac{1}{5}\right)^2\).
- Multiply \(\frac{1}{5}\) by itself: \(\frac{1}{5} \times \frac{1}{5}\).
- Utilize the exponent rule: \( \frac{1}{25} \).
This guide helps in understanding the process of using ex
Expert Solution

Step 1
To evaluate each expression
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education