2. Discover a formula for c2 + f = ? +... %3D n and prove it for all n > 1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Mathematical Reasoning
Writing and Proof:

f = Fibonacci numbers

Prove by Induction

2. Discover a formula for
f? + f,+..+
f = ?
n
and prove it for all n > 1.
Transcribed Image Text:2. Discover a formula for f? + f,+..+ f = ? n and prove it for all n > 1.
n
Fibonacci
n
Fibonacci
1
1
31
1346269
1
32
2178309
3
2
33
3524578
4
3
34
5702887
5
35
9227465
8
36
14930352
7
13
37
24157817
8.
21
38
39088169
34
39
63245986
10
55
40
102334155
11
89
41
165580141
12
144
42
267914296
13
233
43
433494437
14
377
44
701408733
15
610
45
1134903170
16
987
46
1836311903
17
1597
47
2971215073
18
2584
48
4807526976
19
4181
49
7778742049
20
6765
50
12586269025
21
10946
51
20365011074
22
17711
52
32951280099
23
28657
53
53316291173
24
46368
54
86267571272
25
75025
26
121393
27
196418
28
317811
29
514229
30
832040
2.
Transcribed Image Text:n Fibonacci n Fibonacci 1 1 31 1346269 1 32 2178309 3 2 33 3524578 4 3 34 5702887 5 35 9227465 8 36 14930352 7 13 37 24157817 8. 21 38 39088169 34 39 63245986 10 55 40 102334155 11 89 41 165580141 12 144 42 267914296 13 233 43 433494437 14 377 44 701408733 15 610 45 1134903170 16 987 46 1836311903 17 1597 47 2971215073 18 2584 48 4807526976 19 4181 49 7778742049 20 6765 50 12586269025 21 10946 51 20365011074 22 17711 52 32951280099 23 28657 53 53316291173 24 46368 54 86267571272 25 75025 26 121393 27 196418 28 317811 29 514229 30 832040 2.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,