2. Consider the raising and lowering operators of a one-dimensional harmonic oscil- lator, â = √√(q + p) and ↠= √(q − p), which satisfy Μω 2ħ mw. mw. â|n) = √nn - 1), â¹ |n) = √n + 1|n + 1). (a) Show that [Ñ, â] = −â and [Ñ‚ â†] = â†, where  = â¹â is the number operator. (c) Show that |a) := e-la²/2ea¹ |0) is an eigenstate of â with eigenvalue a.
2. Consider the raising and lowering operators of a one-dimensional harmonic oscil- lator, â = √√(q + p) and ↠= √(q − p), which satisfy Μω 2ħ mw. mw. â|n) = √nn - 1), â¹ |n) = √n + 1|n + 1). (a) Show that [Ñ, â] = −â and [Ñ‚ â†] = â†, where  = â¹â is the number operator. (c) Show that |a) := e-la²/2ea¹ |0) is an eigenstate of â with eigenvalue a.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images